Android 4.4 Compatibility Definition

Revision 1
Last updated: November 27, 2013

Copyright © 2013, Google Inc. All rights reserved.
compatibility @android.com

Table of Contents

1. Introduction
2. Resources
3. Software
3.1. Managed API| Compatibility
3.2. Soft API Compatibility
3.2.1. Permissions
3.2.2. Build Parameters
3.2.3. Intent Compatibility
3.2.3.1. Core Application Intents
3.2.3.2. Intent Overrides
3.2.3.3. Intent Namespaces
3.2.3.4. Broadcast Intents
3.2.3.5. Default App Settings
3.3. Native API Compatibility
3.3.1 Application Binary Interfaces
3.4. Web Compatibility
3.4.1. WebView Compatibility

3.4.2. Browser Compatibility
3.5. AP| Behavioral Compatibility

3.6. AP| Namespaces

3.7. Virtual Machine Compatibility

3.8. User Interface Compatibility
3.8.1. Launcher (Home Screen)

3.8.2. Widgets
3.8.3. Notifications

3.8.4. Search
3.8.5. Toasts
3.8.6. Themes
3.8.7. Live Wallpapers
3.8.8. Recent Application Display
3.8.9. Input Management
3.8.10. Lock Screen Media Remote Control
3.8.11. Dreams
3.8.12. Location
3.8.13. Unicode
3.9 Device Administration
3.10 Accessibility
3.11 Text-to-Speech
4. Application Packaging Compatibility
5. Multimedia Compatibility
5.1. Media Codecs
5.2. Video Encoding

5.3. Video Decoding



mailto:compatibility@android.com

5.4. Audio Recording
5.5. Audio Latency
5.6. Network Protocols
6. Developer Tools and Options Compatibility
6.1. Developer Tools

6.2. Developer Options
6.2.1. Experimental

7. Hardware Compatibility
7.1. Display and Graphics
7.1.1. Screen Configuration
7.1.2. Display Metrics
7.1.3. Screen Orientation
7.1.4. 2D and 3D Graphics Acceleration

7.1.5. Legacy Application Compatibility Mode
7.1.6. Screen Types

7.1.7. Screen Technology
7.1.8. External Displays
7.2. Input Devices
7.2.1. Keyboard
7.2.2. Non-touch Navigation
7.2.3. Navigation keys
7.2.4. Touchscreen input
7.2.5. Fake touch input
7.2.6. Microphone
7.3. Sensors
7.3.1. Accelerometer
7.3.2. Magnetometer
7.3.3. GPS
7.3.4. Gyroscope
7.3.5. Barometer
7.3.6. Thermometer
7.3.7. Photometer
7.3.8. Proximity Sensor
7.4. Data Connectivity

7.4.1. Telephon
7.4.2. |[EEE 802.11 (Wi-Fi)

7.4.2.1. Wi-Fi Direct

7.4.2.2. Wi-Fi Tunneled Direct Link Setup
7.4.3. Bluetooth
7.4.4. Near-Field Communications
7.4.5. Minimum Network Capability

7.4.6. Sync Settings
7.5. Cameras

7.5.1. Rear-Facing Camera
7.5.2. Front-Facing Camera
7.5.3. Camera API Behavior
7.5.4. Camera Orientation
7.6. Memory and Storage
7.6.1. Minimum Memory and Storage
7.6.2. Application Shared Storage
7.7.USB
8. Performance Compatibility
9. Security Model Compatibility
9.1. Permissions
9.2. UID and Process Isolation
9.3. Filesystem Permissions




9.4. Alternate Execution Environments
9.5. Multi-User Support
9.6. Premium SMS Warning
9.7. Kernel Security Features
9.8. Privacy
9.9. Full-Disk Encryption

10. Software Compatibility Testing
10.1. Compeatibility Test Suite
10.2. CTS Verifier
10.3. Reference Applications

11. Updatable Software

12. Document Changelog

13. Contact Us




1. Introduction

This document enumerates the requirements that must be met in order for devices to be compatible with Android 4.4.

The use of "must", "must not", "required", "shall", "shall not", "should", "should not", "recommended", "may" and "optional" is per the
IETF standard defined in RFC2119 [Resources, 1].

As used in this document, a "device implementer" or "implementer" is a person or organization developing a hardware/software
solution running Android 4.4. A "device implementation" or "implementation” is the hardware/software solution so developed.

To be considered compatible with Android 4.4, device implementations MUST meet the requirements presented in this
Compatibility Definition, including any documents incorporated via reference.

Where this definition or the software tests described in Section 10 is silent, ambiguous, or incomplete, it is the responsibility of the
device implementer to ensure compatibility with existing implementations.

For this reason, the Android Open Source Project [Resources, 3] is both the reference and preferred implementation of Android.
Device implementers are strongly encouraged to base their implementations to the greatest extent possible on the "upstream"
source code available from the Android Open Source Project. While some components can hypothetically be replaced with
alternate implementations this practice is strongly discouraged, as passing the software tests will become substantially more
difficult. It is the implementer's responsibility to ensure full behavioral compatibility with the standard Android implementation,
including and beyond the Compatibility Test Suite. Finally, note that certain component substitutions and modifications are explicitly
forbidden by this document.

2. Resources

. [ETF RFC2119 Requirement Levels: hitp://iwww.ietf.org/tfc/rfc2119.txt

. Android Compatibility Program Overview: http:/source.android.com/compatibility/index.html

. Android Open Source Project: http:/source.android.com/

. APl definitions and documentation: hitp:/developer.android.com/reference/packages.html

. Android Permissions reference: http:/developer.android.com/reference/android/Manifest.permission.html
. android.os.Build reference: http://developer.android.com/reference/android/os/Build.html

. Android 4.4 allowed version strings: http://source.android.com/compatibility/4.4/versions.html

. Renderscript: http://developer.android.com/guide/topics/graphics/renderscript.html

. Hardware Acceleration: http://developer.android.com/guide/topics/graphics/hardware-accel.html

. android.webkit.WebView class: hitp://developer.android.com/reference/android/webkit/WebView.html

. HTMLS5: http://www.whatwg.org/specs/web-apps/current-work/multipage/
. HTMLS5 offline capabilities: http://dev.w3.org/htmli5/spec/Overview.html#offline

. HTMLS5 video tag: http:/dev.w3.org/html5/spec/Overview.html#video

. HTML5/W3C geolocation API: hitp:/www.w3.org/TR/geolocation-API/

. HTML5/W3C webdatabase API: hitp://www.w3.org/TR/webdatabase/

. HTML5/W3C IndexedDB API: hitp://www.w3.0rg/TR/IndexedDB/

. Dalvik Virtual Machine specification: available in the Android source code, at dalvik/docs

. AppWidgets: http://developer.android.com/guide/practices/ui guidelines/widget design.html
. Notifications: http://developer.android.com/guide/topics/ui/notifiers/notifications.html

. Application Resources: http://code.google.com/android/reference/available-resources.html

. Status Bar icon style guide: http:/developer.android.com/guide/practices/ui_guidelines/icon design status bar.html
. Search Manager: http://developer.android.com/teference/android/app/SearchManager.html

. Toasts: http://developer.android.com/reference/android/widget/Toast.html

. Themes: http:/developer.android.com/guide/topics/uithemes.html
. R.style class: http://developer.android.com/reference/android/R.style.html

. Live Wallpapers: http://developer.android.com/resources/articles/live-wallpapers.html

. Android Device Administration: http:/developer.android.com/guide/topics/admin/device-admin.html

. DevicePolicyManager reference: http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html

. Android Accessibility Service APlIs: http:/developer.android.com/reference/android/accessibilityservice/package-
summary.html

. Android Accessibility APIs: http://developer.android.com/reference/android/view/accessibility/package-summary.html

0 NOoO O O =

[<e]

-
o

—_ -
N =

_ -
A W

-
4]

—_
0 N O

N =
o ©

NN
N —

N
w

N N
a b

NN
N O

N
o8]

N
©

8]
o


http://www.ietf.org/rfc/rfc2119.txt
http://source.android.com/compatibility/index.html
http://source.android.com/
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/os/Build.html
http://source.android.com/compatibility/4.4/versions.html
http://developer.android.com/guide/topics/graphics/renderscript.html
http://developer.android.com/guide/topics/graphics/hardware-accel.html
http://developer.android.com/reference/android/webkit/WebView.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://dev.w3.org/html5/spec/Overview.html#offline
http://dev.w3.org/html5/spec/Overview.html#video
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/webdatabase/
http://www.w3.org/TR/IndexedDB/
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html
http://code.google.com/android/reference/available-resources.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_status_bar.html
http://developer.android.com/reference/android/app/SearchManager.html
http://developer.android.com/reference/android/widget/Toast.html
http://developer.android.com/guide/topics/ui/themes.html
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/resources/articles/live-wallpapers.html
http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/reference/android/accessibilityservice/package-summary.html
http://developer.android.com/reference/android/view/accessibility/package-summary.html

31.
32.
33.
34.
35.
36.
37.

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

68.
69.
70.
71.
72.
73.
74.
75.
76.
77.

78.
79.

80.
81.
82.

Eyes Free project: http://code.google.com/p/eyes-free
Text-To-Speech APIs: http://developer.android.com/reference/android/speech/tts/package-summary.html

Reference tool documentation (for adb, aapt, ddms, systrace): http://developer.android.com/guide/developing/tools/index.html
Android apk file description: http://developer.android.com/guide/topics/fundamentals.html
Manifest files: http://developer.android.com/guide/topics/manifest/manifest-intro.html

Monkey testing tool: http://developer.android.com/guide/developing/tools/monkey.html
Android android.content.pm.PackageManager class and Hardware Features List:

http://developer.android.com/reference/android/content/pm/PackageManager.html

Supporting Multiple Screens: http:/developer.android.com/guide/practices/screens support.html
android.util.DisplayMetrics: http:/developer.android.com/reference/android/util/DisplayMetrics.html
android.content.res.Configuration: http://developer.android.com/reference/android/content/res/Configuration.html
android.hardware.SensorEvent: http://developer.android.com/reference/android/hardware/SensorEvent.html
Bluetooth API: http:/developer.android.com/reference/android/bluetooth/package-summary.html

NDEF Push Protocol: http://source.android.com/compatibility/ndef-push-protocol.pdf
MIFARE MF1S503X: http:/www.nxp.com/documents/data sheet/MF1S503x.pdf

MIFARE MF1S703X: http://www.nxp.com/documents/data sheet/MF1S703x.pdf
MIFARE MFOICU1: http:/www.nxp.com/documents/data sheet/MFOICU1.pdf
MIFARE MFOICU2: http:/www.nxp.com/documents/short data sheet/MFOICU2 SDS.pdf

MIFARE AN130511: hitp://www.nxp.com/documents/application note/AN130511.pdf
MIFARE AN130411: http://www.nxp.com/documents/application note/AN130411.pdf

Camera orientation API: hitp://developer.android.com/reference/android/hardware/Camera.html#setDisplayOrientation(int)
Camera: http://developer.android.com/reference/android/hardware/Camera.html
Android Open Accessories: http://developer.android.com/guide/topics/usb/accessory.html

USB Host API: http://developer.android.com/guide/topics/usb/host.html
Android Security and Permissions reference: http://developer.android.com/guide/topics/security/security.html

Apps for Android: http://code.google.com/p/apps-for-android

Android DownloadManager: http:/developer.android.com/reference/android/app/DownloadManager.html
Android File Transfer: http:/www.android.com/filetransfer

Android Media Formats: http:/developer.android.com/guide/appendix/media-formats.html

HTTP Live Streaming Draft Protocol: hitp://tools.ietf.org/htmi/draft-pantos-http-live-streaming-03

NFC Connection Handover: http://www.nfc-forum.org/specs/spec list/#conn handover

Bluetooth Secure Simple Pairing Using NFC: http:/www.nfc-forum.org/resources/AppDocs/NFCForum AD BTSSP 1 0.pdf
Wi-Fi Multicast API: http:/developer.android.com/reference/android/net/wifi/WifiManager.Multicastl ock.html

Action Assist: http://developer.android.com/reference/android/content/Intent.html#ACTION ASSIST
USB Charging Specification: http:/Awww.usb.org/developers/devclass docs/USB Battery Charging 1.2.pdf
Android Beam: http://developer.android.com/guide/topics/nfc/nfc.html

Android USB Audio: http:/developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB CLASS AUDIO
Android NFC Sharing Settings:

http://developer.android.com/reference/android/provider/Settings.htmI#ACTION NFCSHARING SETTINGS
Wi-Fi Direct (Wi-Fi P2P): http://developer.android.com/reference/android/net/wifi/p2p/WifiP2pManager.html
Lock and Home Screen Widget: http:/developer.android.com/reference/android/appwidget/AppWidgetProviderinfo.html

UserManager reference: http://developer.android.com/reference/android/os/UserManager.html
External Storage reference: http:/source.android.com/devices/tech/storage

External Storage APIs: http://developer.android.com/reference/android/os/Environment.html

SMS Short Code: hitp:/en.wikipedia.org/wiki/Short code

Media Remote Control Client: http:/developer.android.com/reference/android/media/RemoteControlClient.html
Display Manager: http://developer.android.com/reference/android/hardware/display/DisplayManager.html
Dreams: http:/developer.android.com/reference/android/service/dreams/DreamService.html

Android Application Development-Related Settings:
http://developer.android.com/reference/android/provider/Settings.htmI#ACTION APPLICATION DEVELOPMENT SETTINGS
Camera: hitp:/developer.android.com/reference/android/hardware/Camera.Parameters.html

EGL Extension-EGL_ANDROID_RECORDABLE:
http://www.khronos.org/registry/egl/extensions/ANDROID/EGL _ANDROID recordable.txt

Motion Event API: http://developer.android.com/reference/android/view/MotionEvent.html

Touch Input Configuration: http:/source.android.com/devices/tech/inputtouch-devices.html
Unicode 6.1.0: http://www.unicode.org/versions/Unicode6.1.0/



http://http//code.google.com/p/eyes-free
http://developer.android.com/reference/android/speech/tts/package-summary.html
http://developer.android.com/guide/developing/tools/index.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/developing/tools/monkey.html
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/reference/android/util/DisplayMetrics.html
http://developer.android.com/reference/android/content/res/Configuration.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/bluetooth/package-summary.html
http://source.android.com/compatibility/ndef-push-protocol.pdf
http://www.nxp.com/documents/data_sheet/MF1S503x.pdf
http://www.nxp.com/documents/data_sheet/MF1S703x.pdf
http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf
http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf
http://www.nxp.com/documents/application_note/AN130511.pdf
http://www.nxp.com/documents/application_note/AN130411.pdf
http://developer.android.com/reference/android/hardware/Camera.html#setDisplayOrientation(int)
http://developer.android.com/reference/android/hardware/Camera.html
http://developer.android.com/guide/topics/usb/accessory.html
http://developer.android.com/guide/topics/usb/host.html
http://developer.android.com/guide/topics/security/security.html
http://code.google.com/p/apps-for-android
http://developer.android.com/reference/android/app/DownloadManager.html
http://www.android.com/filetransfer
http://developer.android.com/guide/appendix/media-formats.html
http://tools.ietf.org/html/draft-pantos-http-live-streaming-03
http://www.nfc-forum.org/specs/spec_list/#conn_handover/
http://www.nfc-forum.org/resources/AppDocs/NFCForum_AD_BTSSP_1_0.pdf
http://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock.html
http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
http://www.usb.org/developers/devclass_docs/USB_Battery_Charging_1.2.pdf
http://developer.android.com/guide/topics/nfc/nfc.html
http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO
http://developer.android.com/reference/android/provider/Settings.html#ACTION_NFCSHARING_SETTINGS
http://developer.android.com/reference/android/net/wifi/p2p/WifiP2pManager.html
http://developer.android.com/reference/android/appwidget/AppWidgetProviderInfo.html
http://developer.android.com/reference/android/os/UserManager.html
http://source.android.com/devices/tech/storage
http://developer.android.com/reference/android/os/Environment.html
http://en.wikipedia.org/wiki/Short_code
http://developer.android.com/reference/android/media/RemoteControlClient.html
http://developer.android.com/reference/android/hardware/display/DisplayManager.html
http://developer.android.com/reference/android/service/dreams/DreamService.html
http://developer.android.com/reference/android/provider/Settings.html#ACTION_APPLICATION_DEVELOPMENT_SETTINGS
http://developer.android.com/reference/android/hardware/Camera.Parameters.html
http://www.khronos.org/registry/egl/extensions/ANDROID/EGL_ANDROID_recordable.txt
http://developer.android.com/reference/android/view/MotionEvent.html
http://source.android.com/devices/tech/input/touch-devices.html
http://www.unicode.org/versions/Unicode6.1.0/

83. WebView compatibility: http:/www.chromium.org/
84. Android Device Owner App

85. WlflManager API: http //developer android.com/reference/android/net/wifi/WifiManager.html

86. RTC Hardware Coding Requirements: http:/www.webmproject.org/hardware/rtc-coding-requirements/

87. Settings.Secure LOCATION_MODE:
http://developer.android.com/reference/android/provider/Settings.Secure.html#LOCATION MODE

88. Content Resolver: http:/developer.android.com/reference/android/content/ContentResolver.html

89. SettinglnjectorService: hitp:/developer.android.com/reference/android/location/SettingInjectorService.html

90. Host-based Card Emulation: http:/developer.android.com/guide/topics/connectivity/nfc/hce.html

91. Telephony Provider: http://developer.android.com/reference/android/provider/Telephony.html

Many of these resources are derived directly or indirectly from the Android SDK, and will be functionally identical to the information
in that SDK's documentation. In any cases where this Compatibility Definition or the Compatibility Test Suite disagrees with the
SDK documentation, the SDK documentation is considered authoritative. Any technical details provided in the references included
above are considered by inclusion to be part of this Compatibility Definition.

3. Software
3.1. Managed API Compatibility

The managed (Dalvik-based) execution environment is the primary vehicle for Android applications. The Android application
programming interface (API) is the set of Android platform interfaces exposed to applications running in the managed VM
environment. Device implementations MUST provide complete implementations, including all documented behaviors, of any
documented API exposed by the Android SDK [Resources, 4].

Device implementations MUST NOT omit any managed APIs, alter APl interfaces or signatures, deviate from the documented
behavior, or include no-ops, except where specifically allowed by this Compatibility Definition.

This Compatibility Definition permits some types of hardware for which Android includes APIs to be omitted by device
implementations. In such cases, the APIs MUST still be present and behave in a reasonable way. See Section 7 for specific
requirements for this scenario.

3.2. Soft APl Compatibility

In addition to the managed APIs from Section 3.1, Android also includes a significant runtime-only "soft" API, in the form of such
things such as Intents, permissions, and similar aspects of Android applications that cannot be enforced at application compile time.

3.2.1. Permissions

Device implementers MUST support and enforce all permission constants as documented by the Permission reference page
Resources, 5]. Note that Section 9 lists additional requirements related to the Android security model.

3.2.2. Build Parameters

The Android APls include a number of constants on the android.os.Build class [Resources, 6] that are intended to describe the
current device. To provide consistent, meaningful values across device implementations, the table below includes additional
restrictions on the formats of these values to which device implementations MUST conform.

Parameter Comments

The version of the currently-executing Android system, in human-readable format. This field MUST have

VERSION.RELEASE i . )
one of the string values defined in [Resources. 7].

The version of the currently-executing Android system, in a format accessible to third-party application

VERSION.SDK . L .
code. For Android 4.4, this field MUST have the integer value 19.

The version of the currently-executing Android system, in a format accessible to third-party application

VERSION.SDK_INT . o i
code. For Android 4.4, this field MUST have the integer value 19.


http://www.chromium.org/
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isDeviceOwnerApp(java.lang.String)
http://developer.android.com/reference/android/net/wifi/WifiManager.html
http://www.webmproject.org/hardware/rtc-coding-requirements/
http://developer.android.com/reference/android/provider/Settings.Secure.html#LOCATION_MODE
http://developer.android.com/reference/android/content/ContentResolver.html
http://developer.android.com/reference/android/location/SettingInjectorService.html
http://developer.android.com/guide/topics/connectivity/nfc/hce.html
http://developer.android.com/reference/android/provider/Telephony.html

VERSION.INCREMENTAL

BOARD

BRAND

CPU_ABI

CPU_ABI2

DEVICE

FINGERPRINT

HARDWARE

HOST

MANUFACTURER

MODEL

PRODUCT

SERIAL

A value chosen by the device implementer designating the specific build of the currently-executing
Android system, in human-readable format. This value MUST NOT be re-used for different builds made
available to end users. A typical use of this field is to indicate which build number or source-control
change identifier was used to generate the build. There are no requirements on the specific format of this
field, except that it MUST NOT be null or the empty string ("").

A value chosen by the device implementer identifying the specific internal hardware used by the device,
in human-readable format. A possible use of this field is to indicate the specific revision of the board
powering the device. The value of this field MUST be encodable as 7-bit ASCIl and match the regular
expression ""[a-zA-z0-9., -]1+$".

A value reflecting the brand name associated with the device as known to the end users. MUST be in
human-readable format and SHOULD represent the manufacturer of the device or the company brand
under which the device is marketed. The value of this field MUST be encodable as 7-bit ASCIl and match
the regular expression "~ [a-zaA-20-9., -1+$".

The name of the instruction set (CPU type + ABI convention) of native code. See Section 3.3: Native API
Compatibility.

The name of the second instruction set (CPU type + ABI convention) of native code. See Section 3.3:
Native API Compatibility.

A value chosen by the device implementer containing the development name or code name identifying
the configuration of the hardware features and industrial design of the device. The value of this field
MUST be encodable as 7-bit ASCIl and match the regular expression "~ [a-zA-z0-9., -]1+$".

A string that uniquely identifies this build. It SHOULD be reasonably human-readable. It MUST follow this
template:

$ (BRAND) /$ (PRODUCT) /$ (DEVICE) :$ (VERSION.RELEASE)/$(ID)/$ (VERSION.INCREMENTAL) :$ (TYPE)/$ (TAGS)
For example:

acme/myproduct/mydevice:4.4/KRT16/3359:userdebug/test-keys

The fingerprint MUST NOT include whitespace characters. If other fields included in the template above
have whitespace characters, they MUST be replaced in the build fingerprint with another character, such
as the underscore ("_") character. The value of this field MUST be encodable as 7-bit ASCII.

The name of the hardware (from the kernel command line or /proc). It SHOULD be reasonably human-
readable. The value of this field MUST be encodable as 7-bit ASCII and match the regular expression

""[a-zA-Z0-9., -1+s$".

A string that uniquely identifies the host the build was built on, in human readable format. There are no
requirements on the specific format of this field, except that it MUST NOT be null or the empty string ("").

An identifier chosen by the device implementer to refer to a specific release, in human readable format.
This field can be the same as android.os.Build.VERSION.INCREMENTAL, but SHOULD be a value
sufficiently meaningful for end users to distinguish between software builds. The value of this field MUST
be encodable as 7-bit ASCIl and match the regular expression "~[a-za-2z0-9., -]+$".

The trade name of the Original Equipment Manufacturer (OEM) of the product. There are no requirements
on the specific format of this field, except that it MUST NOT be null or the empty string ("").

A value chosen by the device implementer containing the name of the device as known to the end user.
This SHOULD be the same name under which the device is marketed and sold to end users. There are
no requirements on the specific format of this field, except that it MUST NOT be null or the empty string
")

A value chosen by the device implementer containing the development name or code name of the
specific product (SKU) that SHOULD be unique within the same brand. MUST be human-readable, but is

not necessarily intended for view by end users. The value of this field MUST be encodable as 7-bit ASCII
and match the regular expression "~[a-zA-20-9., -]+$".

A hardware serial number, which MUST be available. The value of this field MUST be encodable as 7-bit
ASCII and match the regular expression "~ ([a-zA-z0-9]{6,20})$".



A comma-separated list of tags chosen by the device implementer that further distinguishes the build. For

TAGS example, "unsigned,debug". The value of this field MUST be encodable as 7-bit ASCIl and match the
regular expression "~[a-zA-z0-9., -]+$".
TIME A value representing the timestamp of when the build occurred.

A value chosen by the device implementer specifying the runtime configuration of the build. This field
SHOULD have one of the values corresponding to the three typical Android runtime configurations:

TYPE
"user", "userdebug", or "eng". The value of this field MUST be encodable as 7-bit ASCIl and match the
regular expression "~[a-za-z0-9.,_-]+$".

USER A name or user ID of the user (or automated user) that generated the build. There are no requirements on

the specific format of this field, except that it MUST NOT be null or the empty string ("").

3.2.3. Intent Compatibility

Device implementations MUST honor Android's loose-coupling Intent system, as described in the sections below. By "honored", it
is meant that the device implementer MUST provide an Android Activity or Service that specifies a matching Intent filter and binds to
and implements correct behavior for each specified Intent pattern.

3.2.3.1. Core Application Intents

The Android upstream project defines a number of core applications, such as contacts, calendar, photo gallery, music player, and
so on. Device implementers MAY replace these applications with alternative versions.

However, any such alternative versions MUST honor the same Intent patterns provided by the upstream project. For example, if a
device contains an alternative music player, it must still honor the Intent pattern issued by third-party applications to pick a song.

The following applications are considered core Android system applications:

o Desk Clock
* Browser

o Calendar

o Contacts

o Gallery

o GlobalSearch
e Launcher

e Music

o Settings

The core Android system applications include various Activity, or Service components that are considered "public". That is, the
attribute "android:exported" may be absent, or may have the value "true".

For every Activity or Service defined in one of the core Android system apps that is not marked as non-public via an
android:exported attribute with the value "false", device implementations MUST include a component of the same type
implementing the same Intent filter patterns as the core Android system app.

In other words, a device implementation MAY replace core Android system apps; however, if it does, the device implementation
MUST support all Intent patterns defined by each core Android system app being replaced.

3.2.3.2. Intent Overrides

As Android is an extensible platform, device implementations MUST allow each Intent pattern referenced in Section 3.2.3.1 to be
overridden by third-party applications. The upstream Android open source implementation allows this by default; device
implementers MUST NOT attach special privileges to system applications' use of these Intent patterns, or prevent third-party
applications from binding to and assuming control of these patterns. This prohibition specifically includes but is not limited to
disabling the "Chooser" user interface that allows the user to select between multiple applications which all handle the same Intent
pattern.

However, device implementations MAY provide default activities for specific URI patterns (eg. http://play.google.com) if the default



activity provides a more specific filter for the data URI. For example, an intent filter specifying the data URI "http://www.android.com"
is more specific than the browser filter for "http://". Device implementations MUST provide a user interface for users to modify the
default activity for intents.

3.2.3.3. Intent Namespaces

Device implementations MUST NOT include any Android component that honors any new Intent or Broadcast Intent patterns using
an ACTION, CATEGORY, or other key string in the android.* or com.android.* namespace. Device implementers MUST NOT
include any Android components that honor any new Intent or Broadcast Intent patterns using an ACTION, CATEGORY, or other
key string in a package space belonging to another organization. Device implementers MUST NOT alter or extend any of the Intent
patterns used by the core apps listed in Section 3.2.3.1. Device implementations MAY include Intent patterns using namespaces
clearly and obviously associated with their own organization.

This prohibition is analogous to that specified for Java language classes in Section 3.6.
3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain Intents to notify them of changes in the hardware or software
environment. Android-compatible devices MUST broadcast the public broadcast Intents in response to appropriate system events.
Broadcast Intents are described in the SDK documentation.

3.2.3.5. Default App Settings

Android 4.4 adds settings that allow users to select their default Home and SMS applications. Device implementations MUST
provide a similar user settings menu for each, compatible with the Intent filter pattern and API methods described in the SDK

documentation [Resources, 91].

3.3. Native APl Compatibility
3.3.1 Application Binary Interfaces

Managed code running in Dalvik can call into native code provided in the application .apk file as an ELF .so file compiled for the
appropriate device hardware architecture. As native code is highly dependent on the underlying processor technology, Android
defines a number of Application Binary Interfaces (ABIs) in the Android NDK, in the file docs/cpu-arcH-aBIS.html. If a device
implementation is compatible with one or more defined ABIs, it SHOULD implement compatibility with the Android NDK, as below.

If a device implementation includes support for an Android ABI, it:

e MUST include support for code running in the managed environment to call into native code, using the standard Java Native
Interface (JNI) semantics
« MUST be source-compatible (i.e. header compatible) and binary-compatible (for the ABI) with each required library in the list
below
* MUST accurately report the native Application Binary Interface (ABI) supported by the device, via the
android.os.Build.cPu_aBI APl and android.os.Build.CPU_ABI2 parameters.
e MUST report, via android.os.Build.cru_aBI2, ONnly those ABIs documented in the latest version of the Android NDK, in the
file docs/CcPU-ARCH-ABIS.html
e MUST report, via android.os.Build.cpu_aBI, only one of the ABIs listed below
o armeabi-v7a
o x86
o mips
+ SHOULD be built using the source code and header files available in the upstream Android Open Source Project

The following native code APIs MUST be available to apps that include native code:

libc (C library)

libm (math library)
Minimal support for C++
+ JNlinterface



« liblog (Android logging)

e libz (Zlib compression)

« libdl (dynamic linker)

e libGLESv1_CM.so (OpenGL ES 1.0)

¢ libGLESv2.so (OpenGL ES 2.0)

¢ libGLESV3.so (OpenGL ES 3.0)

» libEGL.so (native OpenGL surface management)
« libjnigraphics.so

¢ libOpenSLES.so (OpenSL ES 1.0.1 audio support)
¢ libOpenMAXAL.so (OpenMAX AL 1.0.1 support)
« libandroid.so (native Android activity support)

» Support for OpenGL, as described below

Note that future releases of the Android NDK may introduce support for additional ABIs. If a device implementation is not compatible
with an existing predefined ABI, it MUST NOT report support for any ABI at all.

Note that device implementations MUST include libGLESv3.so and it MUST symlink (symbolic) link to libGLESv2.s0. On device
implementations that declare support for OpenGL ES 3.0, libGLESv2.so MUST export the OpenGL ES 3.0 function symbols in
addition to the OpenGL ES 2.0 function symbols.

Native code compatibility is challenging. For this reason, it should be repeated that device implementers are VERY strongly
encouraged to use the upstream implementations of the libraries listed above to help ensure compatibility.

3.4. Web Compatibility
3.4.1. WebView Compatibility

The Android Open Source implementation uses code from the Chromium Project to implement the android.webkit.WebvView
Resources, 10] . Because it is not feasible to develop a comprehensive test suite for a web rendering system, device implementers
MUST use the specific upstream build of Chromium in the WebView implementation. Specifically:

o Device android.webkit.Webview implementations MUST be based on the Chromium build from the upstream Android Open
Source Project for Android 4.4. This build includes a specific set of functionality and security fixes for the WebView.

Resources, 83]
« The user agent string reported by the WebView MUST be in this format:

Mozilla/5.0 (Linux; Android $(VERSION); $(LOCALE); $(MODEL) Build/$(BUILD)) AppleWebKit/537.36 (KHTML, like
Gecko) Version/4.0 $(CHROMIUM_VER) Mobile Safari/537.36
o The value of the $(VERSION) string MUST be the same as the value for android.os.Build.VERSION.RELEASE.
o The value of the $(LOCALE) string SHOULD follow the ISO conventions for country code and language, and SHOULD
refer to the current configured locale of the device.
o The value of the $(MODEL) string MUST be the same as the value for android.os.Build.MODEL.
o The value of the $(BUILD) string MUST be the same as the value for android.os.Build.ID.
o The value of the $(CHROMIUM_VER) string MUST be the version of Chromium in the upstream Android Open Source
Project.
o Device implementations MAY omit mobile in the user agent string.

The WebView component SHOULD include support for as much of HTML5 [Resources, 11] as possible.
3.4.2. Browser Compatibility

Device implementations MUST include a standalone Browser application for general user web browsing. The standalone Browser
MAY be based on a browser technology other than WebKit. However, even if an alternate Browser application is used, the
android.webkit.Webview component provided to third-party applications MUST be based on WebKit, as described in Section 3.4.1.

Implementations MAY ship a custom user agent string in the standalone Browser application.

The standalone Browser application (whether based on the upstream WebKit Browser application or a third-party replacement)
SHOULD include support for as much of HTML5 [Resources. 11] as possible. Minimally, device implementations MUST support



each of these APIs associated with HTML5:

« application cache/offline operation [Resources, 12]
» the <video>tag [Resources. 13]
» geolocation [Resources, 14]

Additionally, device implementations MUST support the HTML5/W3C webstorage API [Resources. 15], and SHOULD support the
HTML5/W3C IndexedDB API [Resources, 16]. Note that as the web development standards bodies are transitioning to favor
IndexedDB over webstorage, IndexedDB is expected to become a required component in a future version of Android.

3.5. API Behavioral Compatibility

The behaviors of each of the AP types (managed, soft, native, and web) must be consistent with the preferred implementation of the
upstream Android Open Source Project [Resources, 3]. Some specific areas of compatibility are:

* Devices MUST NOT change the behavior or semantics of a standard Intent

o Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of system component (such as Service,
Activity, ContentProvider, etc.)

* Devices MUST NOT change the semantics of a standard permission

The above list is not comprehensive. The Compatibility Test Suite (CTS) tests significant portions of the platform for behavioral
compatibility, but not all. It is the responsibility of the implementer to ensure behavioral compatibility with the Android Open Source
Project. For this reason, device implementers SHOULD use the source code available via the Android Open Source Project where
possible, rather than re-implement significant parts of the system.

3.6. APl Namespaces

Android follows the package and class namespace conventions defined by the Java programming language. To ensure
compatibility with third-party applications, device implementers MUST NOT make any prohibited modifications (see below) to these
package namespaces:

e java.*

e javax.”

e sun.*

e android.”

+ com.android.”

Prohibited modifications include:

» Device implementations MUST NOT modify the publicly exposed APIs on the Android platform by changing any method or
class signatures, or by removing classes or class fields.

» Device implementers MAY modify the underlying implementation of the APls, but such modifications MUST NOT impact the
stated behavior and Java-language signature of any publicly exposed APlIs.

» Device implementers MUST NOT add any publicly exposed elements (such as classes or interfaces, or fields or methods to
existing classes or interfaces) to the APIs above.

A "publicly exposed element" is any construct which is not decorated with the "@hide" marker as used in the upstream Android
source code. In other words, device implementers MUST NOT expose new APIs or alter existing APIs in the namespaces noted
above. Device implementers MAY make internal-only modifications, but those modifications MUST NOT be advertised or otherwise
exposed to developers.

Device implementers MAY add custom APls, but any such APIs MUST NOT be in a namespace owned by or referring to another
organization. For instance, device implementers MUST NOT add APIs to the com.google.” or similar namespace; only Google may
do so. Similarly, Google MUST NOT add APIs to other companies' namespaces. Additionally, if a device implementation includes
custom APIs outside the standard Android namespace, those APIls MUST be packaged in an Android shared library so that only
apps that explicitly use them (via the <uses-1ibrary> mechanism) are affected by the increased memory usage of such APlIs.

If a device implementer proposes to improve one of the package namespaces above (such as by adding useful new functionality to
an existing API, or adding a new API), the implementer SHOULD visit source.android.com and begin the process for contributing



changes and code, according to the information on that site.

Note that the restrictions above correspond to standard conventions for naming APls in the Java programming language; this
section simply aims to reinforce those conventions and make them binding through inclusion in this compatibility definition.

3.7. Virtual Machine Compatibility

Device implementations MUST support the full Dalvik Executable (DEX) bytecode specification and Dalvik Virtual Machine
semantics [Resources, 17].

Device implementations MUST configure Dalvik to allocate memory in accordance with the upstream Android platform, and as
specified by the following table. (See Section 7.1.1 for screen size and screen density definitions.)

Note that memory values specified below are considered minimum values, and device implementations MAY allocate more memory
per application.

Screen Size Screen Density | Application Memory
small / normal /large | Idpi / mdpi 16MB
small / normal /large | tvdpi / hdpi 32MB
small /normal /large | xhdpi 64MB
small /normal /large | 400dpi 96MB
small /normal /large | xxhdpi 128MB
xlarge mdpi 32MB
xlarge tvdpi / hdpi 64MB
xlarge xhdpi 128MB
xlarge 400dpi 192MB
xlarge xxhdpi 256MB

3.8. User Interface Compatibility
3.8.1. Launcher (Home Screen)

Android includes a launcher application (home screen) and support for third party applications to replace the device launcher (home
screen). Device implementations that allow third party applications to replace the device home screen MUST declare the platform

feature android.software. home_screen.

3.8.2. Widgets

Android defines a component type and corresponding API and lifecycle that allows applications to expose an "AppWidget" to the
end user [Resources, 18]. Device implementations that support embedding widgets on the home screen MUST meet the following
requirements and declare support for platform feature android.software.app_widgets.

o Device launchers MUST include built-in support for AppWidgets, and expose user interface affordances to add, configure,
view, and remove AppWidgets directly within the Launcher.

» Device implementations MUST be capable of rendering widgets that are 4 x 4 in the standard grid size. (See the App Widget
Design Guidelines in the Android SDK documentation [Resources, 18] for details.

« Device implementations that include support for lock screen MUST support application widgets on the lock screen.

3.8.3. Notifications

Android includes APIs that allow developers to notify users of notable events [Resources, 19], using hardware and software
features of the device.



Some APIs allow applications to perform notifications or attract attention using hardware, specifically sound, vibration, and light.
Device implementations MUST support notifications that use hardware features, as described in the SDK documentation, and to the
extent possible with the device implementation hardware. For instance, if a device implementation includes a vibrator, it MUST
correctly implement the vibration APIs. If a device implementation lacks hardware, the corresponding APIs MUST be implemented
as no-ops. Note that this behavior is further detailed in Section 7.

Additionally, the implementation MUST correctly render all resources (icons, sound files, etc.) provided for in the APIs [Resources,
20], or in the Status/System Bar icon style guide [Resources, 21]. Device implementers MAY provide an alternative user experience
for natifications than that provided by the reference Android Open Source implementation; however, such alternative notification
systems MUST support existing notification resources, as above.

Android includes support for rich notifications, such as interactive Views for ongoing notifications. Device implementations MUST
properly display and execute rich notifications, as documented in the Android APls.

3.8.4. Search

Android includes APIs [Resources, 22] that allow developers to incorporate search into their applications, and expose their
application's data into the global system search. Generally speaking, this functionality consists of a single, system-wide user
interface that allows users to enter queries, displays suggestions as users type, and displays results. The Android APIs allow
developers to reuse this interface to provide search within their own apps, and allow developers to supply results to the common
global search user interface.

Device implementations MUST include a single, shared, system-wide search user interface capable of real-time suggestions in
response to user input. Device implementations MUST implement the APIs that allow developers to reuse this user interface to
provide search within their own applications. Device implementations MUST implement the APlIs that allow third-party applications
to add suggestions to the search box when itis run in global search mode. If no third-party applications are installed that make use
of this functionality, the default behavior SHOULD be to display web search engine results and suggestions.

3.8.5. Toasts

Applications can use the "Toast" API (defined in [Resources, 23]) to display short non-modal strings to the end user, that disappear
after a brief period of time. Device implementations MUST display Toasts from applications to end users in some high-visibility
manner.

3.8.6. Themes

Android provides "themes" as a mechanism for applications to apply styles across an entire Activity or application.

Android includes a "Holo" theme family as a set of defined styles for application developers to use if they want to match the Holo
theme look and feel as defined by the Android SDK [Resources, 24]. Device implementations MUST NOT alter any of the Holo
theme attributes exposed to applications [Resources, 25].

Android also includes a "Device Default" theme family as a set of defined styles for application developers to use if they want to
match the look and feel of the device theme as defined by the device implementer. Device implementations MAY modify the
DeviceDefault theme attributes exposed to applications [Resources, 25].

From version 4.4, Android now supports a new variant theme with translucent system bars, allowing application developers to fill
the area behind the status and navigation bar with their app content. To enable a consistent developer experience in this
configuration, it is important the status bar icon style is maintained across different device implementations. Therefore, Android
device implementations MUST use white for system status icons (such as signal strenght and battery level) and notifications issued
by the system, unless the icon is indicating a problematic status [Resources, 25].

3.8.7. Live Wallpapers

Android defines a component type and corresponding API and lifecycle that allows applications to expose one or more "Live
Wallpapers" to the end user [Resources, 26]. Live Wallpapers are animations, patterns, or similar images with limited input
capabilities that display as a wallpaper, behind other applications.

Hardware is considered capable of reliably running live wallpapers if it can run all live wallpapers, with no limitations on



functionality, at a reasonable framerate with no adverse affects on other applications. If limitations in the hardware cause wallpapers
and/or applications to crash, malfunction, consume excessive CPU or battery power, or run at unacceptably low frame rates, the
hardware is considered incapable of running live wallpaper. As an example, some live wallpapers may use an Open GL 1.0 or 2.0
context to render their content. Live wallpaper will not run reliably on hardware that does not support multiple OpenGL contexts
because the live wallpaper use of an OpenGL context may conflict with other applications that also use an OpenGL context.

Device implementations capable of running live wallpapers reliably as described above SHOULD implement live wallpapers.
Device implementations determined to not run live wallpapers reliably as described above MUST NOT implement live wallpapers.

3.8.8. Recent Application Display

The upstream Android source code includes a user interface for displaying recent applications using a thumbnail image of the
application's graphical state at the moment the user last left the application. Device implementations MAY alter or eliminate this user
interface; however, a future version of Android is planned to make more extensive use of this functionality. Device implementations
are strongly encouraged to use the upstream Android user interface (or a similar thumbnail-based interface) for recent applications,
or else they may not be compatible with a future version of Android.

3.8.9. Input Management

Android includes support for Input Management and support for third party input method editors. Device implementations that allow
users to use third party input methods on the device MUST declare the platform feature android.software.input_methods and
support IME APIs as defined in the Android SDK documentation.

Device implementations that declare the android.software.input_methods feature MUST provide a user-accessible mechanism to
add and configure third party input methods. Device implementations MUST display the settings interface in response to the

android.settings.INPUT METHOD_ SETTINGS intent.
3.8.10. Lock Screen Media Remote Control

Android includes support for Remote Control API that lets media applications integrate with playback controls that are displayed in
a remote view like the device lock screen [Resources, 74]. Device implementations that support lock screen in the device and allow
users to add widgets on the home screen MUST include support for embedding remote controls in the device lock screen
[Resources, 69].

3.8.11. Dreams

Android includes support for interactive screensavers called Dreams [Resources, 76]. Dreams allows users to interact with
applications when a charging device is idle, or docked in a desk dock. Device implementations MUST include support for Dreams
and provide a settings option for users to configure Dreams.

3.8.12. Location

Location modes MUST be displayed in the Location menu within Settings [Resources, 87]. Location services provided through the
SsettingInjectorService introduced in Android 4.4 must be displayed in the same Location menu [Resources. 89].

3.8.13. Unicode

Android 4.4 includes support for color emoji characters. Android device implementations MUST provide an input method to the user
for the Emoji characters defined in Unicode 6.1 [Resources, 82] and MUST be capable of rendering these emoji characters in color

glyph.

3.9. Device Administration

Android includes features that allow security-aware applications to perform device administration functions at the system level, such
as enforcing password policies or performing remote wipe, through the Android Device Administration API [Resources, 27]. Device

implementations MUST provide an implementation of the pevicerolicyManager class [Resources, 28]. Device implementations that
include support for lock screen MUST support the full range of device administration policies defined in the Android SDK

documentation [Resources, 27].



Device implementations MAY have a preinstalled application performing device administration functions but this application MUST
NOT be set out-of-the box as the default Device Owner app [Resources, 84].

3.10. Accessibility

Android provides an accessibility layer that helps users with disabilities to navigate their devices more easily. In addition, Android
provides platform APlIs that enable accessibility service implementations to receive callbacks for user and system events and
generate alternate feedback mechanisms, such as text-to-speech, haptic feedback, and trackball/d-pad navigation [Resources, 29].
Device implementations MUST provide an implementation of the Android accessibility framework consistent with the default
Android implementation. Specifically, device implementations MUST meet the following requirements.

« Device implementations MUST support third party accessibility service implementations through the
android.accessibilityservice APIs [Resources 30].

» Device implementations MUST generate accessibilityEvents and deliver these events to all registered
AccessibilityService implementations in a manner consistent with the default Android implementation.

» Device implementations MUST provide a user-accessible mechanism to enable and disable accessibility services, and
MUST display this interface in response to the android.provider.Settings.ACTION ACCESSIBILITY SETTINGS intent.

Additionally, device implementations SHOULD provide an implementation of an accessibility service on the device, and SHOULD
provide a mechanism for users to enable the accessibility service during device setup. An open source implementation of an
accessibility service is available from the Eyes Free project [Resources, 31].

3.11. Text-to-Speech

Android includes APIs that allow applications to make use of text-to-speech (TTS) services, and allows service providers to provide
implementations of TTS services [Resources, 32]. Device implementations MUST meet these requirements related to the Android
TTS framework:

o Device implementations MUST support the Android TTS framework APIs and SHOULD include a TTS engine supporting the
languages available on the device. Note that the upstream Android open source software includes a full-featured TTS engine
implementation.

» Device implementations MUST support installation of third-party TTS engines.

» Device implementations MUST provide a user-accessible interface that allows users to select a TTS engine for use at the
system level.

4. Application Packaging Compatibility

Device implementations MUST install and run Android ".apk" files as generated by the "aapt" tool included in the official Android

SDK [Resources, 33].

Devices implementations MUST NOT extend either the .apk [Resources, 34], Android Manifest [Resources, 35], Dalvik bytecode
Resources, 17], or renderscript bytecode formats in such a way that would prevent those files from installing and running correctly
on other compatible devices. Device implementers SHOULD use the reference upstream implementation of Dalvik, and the
reference implementation's package management system.

5. Multimedia Compatibility

Device implementations MUST include at least one form of audio output, such as speakers, headphone jack, external speaker
connection, etc.

5.1. Media Codecs

Device implementations MUST support the core media formats specified in the Android SDK documentation [Resources, 58] except
where explicitly permitted in this document. Specifically, device implementations MUST support the media formats, encoders,
decoders, file types and container formats defined in the tables below. All of these codecs are provided as software
implementations in the preferred Android implementation from the Android Open Source Project.

Please note that neither Google nor the Open Handset Alliance make any representation that these codecs are



unencumbered by third-party patents. Those intending to use this source code in hardware or software products are
advised that implementations of this code, including in open source software or shareware, may require patent licenses
from the relevant patent holders.

Note that these tables do not list specific bitrate requirements for most video codecs because current device hardware does not
necessarily support bitrates that map exactly to the required bitrates specified by the relevant standards. Instead, device
implementations SHOULD support the highest bitrate practical on the hardware, up to the limits defined by the specifications.



Type

Audio

Format/
Codec

MPEG-4
AAC Profile
(AAC LC)

MPEG-4 HE
AAC Profile
(AACH+)

MPEG-4 HE
AAC v2
Profile
(enhanced
AAC+)

MPEG-4
Audio
Object Type
ER AAC
ELD
(Enhanced
Low Delay
AAC)

AMR-NB

AMR-WB

FLAC

MP3

MIDI

Encoder

REQUIRED for device
implementations that include
microphone hardware and define

android.hardware.microphone.

REQUIRED for device
implementations that include
microphone hardware and define
android.hardware.microphone

REQUIRED for device
implementations that include
microphone hardware and define
android.hardware.microphone

REQUIRED for device
implementations that include
microphone hardware and define

android.hardware.microphone.

REQUIRED for device
implementations that include
microphone hardware and define

android.hardware.microphone.

Decoder

REQUIRED

REQUIRED

REQUIRED

REQUIRED

REQUIRED

REQUIRED

REQUIRED
(Android 3.1+)

REQUIRED

REQUIRED

Details

Support for mono/stereo/5.0/5.1*
content with standard sampling
rates from 8 to 48 kHz.

Support for mono/stereo/5.0/5.1*
content with standard sampling
rates from 16 to 48 kHz.

Support for mono/stereo/5.0/5.1*
content with standard sampling
rates from 16 to 48 kHz.

Support for mono/stereo content
with standard sampling rates
from 16 to 48 kHz.

4.75 to 12.2 kbps sampled @
8kHz

9 rates from 6.60 kbit/s to 23.85
kbit/s sampled @ 16kHz

Mono/Stereo (no multichannel).
Sample rates up to 48 kHz (but
up to 44.1 kHz is recommended
on devices with 44.1 kHz output,
as the 4810 44.1 kHz
downsampler does notinclude a
low-pass filter). 16-bit
recommended; no dither applied
for 24-bit.

Mono/Stereo 8-320Kbps
constant (CBR) or variable bit-
rate (VBR)

MIDI Type 0 and 1. DLS Version
1 and 2. XMF and Mobile XMF.
Support for ringtone formats
RTTTL/RTX, OTA, and iMelody

File Type(s)/
Container
Formats

e 3GPP (.3gp)

« MPEG-4
(.mp4, .m4a)

e ADTS raw
AAC (.aac,
decode in
Android
3.1+,
encode in
Android
4.0+, ADIF
not
supported)
