android

Compatibility Definition

Android 8.1

Last updated: December 5, 2017
Copyright © 2017, Google Inc. All rights reserved.

Table of Contents

1.1 Document Structure
1.1.1. Requirements by Device Type
1.1.2. Requirement ID

2.1 Device Configurations

2.2. Handheld Requirements
2.2.1. Hardware
2.2.2. Multimedia
2.2.3. Software
2.2.4. Performance and Power
2.2.5. Security Model

2.3. Television Requirements
2.3.1. Hardware
2.3.2. Multimedia
2.3.3. Software
2.2.4. Performance and Power

2.4. Watch Requirements
2.4.1. Hardware
2.4.2. Multimedia
2.4.3. Software

2.5. Automotive Requirements
2.5.1. Hardware
2.5.2. Multimedia
2.5.3. Software
2.2.4. Performance and Power
2.2.5. Security Model

2.6. Tablet Requirements
2.4.1. Hardware

3.1. Managed API Compatibility
3.1.1. Android Extensions

3.2. Soft APl Compatibility
3.2.1. Permissions

3.2.2. Build Parameters

3.2.3. Intent Compatibility
3.2.3.1. Core Application Intents
3.2.3.2. Intent Resolution
3.2.3.3. Intent Namespaces
3.2.3.4. Broadcast Intents
3.2.3.5. Default App Settings

3.2.4. Activities on secondary displays

3.3. Native API Compatibility
3.3.1. Application Binary Interfaces

3.3.2. 32-bit ARM Native Code Compatibility

3.4. Web Compatibility
3.4.1. WebView Compatibility
3.4.2. Browser Compatibility
3.5. API Behavioral Compatibility
3.6. APl Namespaces
3.7. Runtime Compatibility

3.8. User Interface Compatibility
3.8.1. Launcher (Home Screen)
3.8.2. Widgets
3.8.3. Natifications

3.8.3.1. Presentation of Notifications

3.8.3.2. Notification Listener Service

3.8.3.3. DND (Do not Disturb)
3.8.4. Search
3.8.5. Alerts and Toasts
3.8.6. Themes
3.8.7. Live Wallpapers
3.8.8. Activity Switching
3.8.9. Input Management
3.8.10. Lock Screen Media Control

3.8.11. Screen savers (previously Dreams)

3.8.12. Location
3.8.13. Unicode and Font

Page 2 of 122

3.8.14. Multi-windows

3.9. Device Administration

3.9.1 Device Provisioning
3.9.1.1 Device owner provisioning
3.9.1.2 Managed profile provisioning

3.9.2 Managed Profile Support
3.10. Accessibility
3.11. Text-to-Speech

3.12. TV Input Framework

3.12.1. TV App
3.12.1.1. Electronic Program Guide
3.12.1.2. Navigation
3.12.1.3. TV input app linking
3.12.1.4. Time shifting
3.12.1.5. TV recording

3.13. Quick Settings
3.14. Media Ul
3.15. Instant Apps

3.16. Companion Device Pairing

5.1. Media Codecs
5.1.1. Audio Encoding
5.1.2. Audio Decoding
5.1.3. Audio Codecs Details
5.1.4. Image Encoding
5.1.5. Image Decoding
5.1.6. Image Codecs Details
5.1.7. Video Codecs
5.1.8. Video Codecs List

5.2. Video Encoding
5.2.1. H.263
5.2.2. H-264
5.2.3. VP8

5.2.4. VP9

5.3. Video Decoding
5.3.1. MPEG-2
5.3.2. H.263
5.3.3. MPEG-4
5.3.4. H.264
5.3.5. H.265 (HEVC)
5.3.6. VP8
5.3.7. VP9

5.4. Audio Recording
5.4.1. Raw Audio Capture

5.4.2. Capture for Voice Recognition
5.4.3. Capture for Rerouting of Playback

5.5. Audio Playback
5.5.1. Raw Audio Playback
5.5.2. Audio Effects
5.5.3. Audio Output Volume
5.6. Audio Latency
5.7. Network Protocols
5.8. Secure Media

5.9. Musical Instrument Digital Interface
(MIDI)

5.10. Professional Audio

5.11. Capture for Unprocessed

6.1. Developer Tools

6.2. Developer Options

7.1. Display and Graphics

7.1.1. Screen Configuration
7.1.1.1. Screen Size
7.1.1.2. Screen Aspect Ratio
7.1.1.3. Screen Density

7.1.2. Display Metrics

7.1.3. Screen Orientation

Page 3 of 122

7.1.4. 2D and 3D Graphics Acceleration
7.1.4.1 OpenGL ES
7.1.4.2 Vulkan
7.1.4.3 RenderScript
7.1.4.4 2D Graphics Acceleration
7.1.4.5 Wide-gamut Displays

7.1.5. Legacy Application Compatibility Mode
7.1.6. Screen Technology
7.1.7. Secondary Displays

7.2. Input Devices
7.2.1. Keyboard
7.2.2. Non-touch Navigation
7.2.3. Navigation Keys
7.2.4. Touchscreen Input
7.2.5. Fake Touch Input

7.2.6. Game Controller Support
7.2.6.1. Button Mappings
7.2.7. Remote Control

7.3. Sensors
7.3.1. Accelerometer
7.3.2. Magnetometer
7.3.3. GPS
7.3.4. Gyroscope
7.3.5. Barometer
7.3.6. Thermometer
7.3.7. Photometer
7.3.8. Proximity Sensor
7.3.9. High Fidelity Sensors
7.3.10. Fingerprint Sensor

7.3.11. Android Automotive-only sensors
7.3.11.1. Current Gear
7.3.11.2. Day Night Mode
7.3.11.3. Driving Status
7.3.11.4. Wheel Speed

7.3.12. Pose Sensor

7.4. Data Connectivity

7.4.1. Telephony
7.4.1.1. Number Blocking Compatibility
7.4.1.2. Telecom API

7.4.2. IEEE 802.11 (Wi-Fi)
7.4.2.1. Wi-Fi Direct
7.4.2.2. Wi-Fi Tunneled Direct Link Setup
7.4.2.3. Wi-Fi Aware
7.4.2.4. Wi-Fi Passpoint
7.4.3. Bluetooth
7.4.4. Near-Field Communications
7.4.5. Minimum Network Capability
7.4.6. Sync Settings
7.4.7. Data Saver

7.5. Cameras
7.5.1. Rear-Facing Camera
7.5.2. Front-Facing Camera
7.5.3. External Camera
7.5.4. Camera API| Behavior
7.5.5. Camera Orientation

7.6. Memory and Storage
7.6.1. Minimum Memory and Storage
7.6.2. Application Shared Storage
7.6.3. Adoptable Storage

7.7. USB
7.7.1. USB peripheral mode
7.7.2. USB host mode

7.8. Audio
7.8.1. Microphone

7.8.2. Audio Output
7.8.2.1. Analog Audio Ports
7.8.3. Near-Ultrasound

7.9. Virtual Reality

Page 4 of 122

7.9.1. Virtual Reality Mode
7.9.2. Virtual Reality High Performance

8.1. User Experience Consistency
8.2. File I/O Access Performance
8.3. Power-Saving Modes

8.4. Power Consumption Accounting

8.5. Consistent Performance

9.1. Permissions

9.2. UID and Process Isolation

9.3. Filesystem Permissions

9.4. Alternate Execution Environments
9.5. Multi-User Support

9.6. Premium SMS Warning

9.7. Kernel Security Features

9.8. Privacy
9.8.1. Usage History
9.8.2. Recording
9.8.3. Connectivity
9.8.4. Network Traffic

9.9. Data Storage Encryption
9.9.1. Direct Boot
9.9.2. File Based Encryption
9.9.3. Full Disk Encryption

9.10. Device Integrity

9.11. Keys and Credentials
9.11.1. Secure Lock Screen

9.12. Data Deletion
9.13. Safe Boot Mode

9.14. Automotive Vehicle System Isolation

10.1. Compatibility Test Suite
10.2. CTS Verifier

12.1. Changelog Viewing Tips

Page 5 of 122

1. Introduction

This document enumerates the requirements that must be met in order for devices to be compatible
with Android 8.1.

The use of “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” is per the IETF standard defined in REC2119 .

As used in this document, a “device implementer” or “implementer” is a person or organization
developing a hardware/software solution running Android 8.1. A “device implementation” or
“implementation is the hardware/software solution so developed.

To be considered compatible with Android 8.1, device implementations MUST meet the requirements
presented in this Compatibility Definition, including any documents incorporated via reference.

Where this definition or the software tests described in section 10 is silent, ambiguous, or incomplete,
it is the responsibility of the device implementer to ensure compatibility with existing implementations.

For this reason, the Android Open Source Project is both the reference and preferred implementation
of Android. Device implementers are STRONGLY RECOMMENDED to base their implementations to
the greatest extent possible on the “upstream” source code available from the Android Open Source
Project. While some components can hypothetically be replaced with alternate implementations, it is
STRONGLY RECOMMENDED to not follow this practice, as passing the software tests will become
substantially more difficult. It is the implementer’s responsibility to ensure full behavioral compatibility
with the standard Android implementation, including and beyond the Compatibility Test Suite. Finally,
note that certain component substitutions and modifications are explicitly forbidden by this document.

Many of the resources linked to in this document are derived directly or indirectly from the Android
SDK and will be functionally identical to the information in that SDK’s documentation. In any cases
where this Compatibility Definition or the Compatibility Test Suite disagrees with the SDK
documentation, the SDK documentation is considered authoritative. Any technical details provided in
the linked resources throughout this document are considered by inclusion to be part of this
Compatibility Definition.

1.1 Document Structure
1.1.1. Requirements by Device Type

Section 2 contains all the MUST and STRONGLY RECOMMENDED requirements that apply to a
specific device type. Each subsection of Section 2 is dedicated to a specific device type.

All the other requirements, that universally apply to any Android device implementations, are listed in
the sections after Section 2 . These requirements are referenced as "Core Requirements" in this
document.

1.1.2. Requirement ID

Requirement ID is assigned for MUST requirements.

e The ID is assigned for MUST requirements only.
e STRONGLY RECOMMENDED requirements are marked as [SR] but ID is not assigned.
e The ID consists of : Device Type ID - Condition ID - Requirement ID (e.g. C-0-1).

Each ID is defined as below:

e Device Type ID (see more on 2. Device Types
o C: Core (Requirements that are applied to any Android device
implementations)

Page 6 of 122

http://www.ietf.org/rfc/rfc2119.txt
http://source.android.com/

o H: Android Handheld device
o T: Android Television device
o A: Android Automotive implementation

e Condition ID
o When the requirement is unconditional, this ID is set as 0.

o When the requirement is conditional, 1 is assinged for the 1st condition and the
number increments by 1 within the same section and the same device type.

e Requirement ID

o This ID starts from 1 and increments by 1 within the same section and the
same condition.

2. Device Types

While the Android Open Source Project provides a software stack that can be used for a variety of
device types and form factors, there are a few device types that have a relatively better established
application distribution ecosystem.

This section describes those device types, and additional requirements and recommendations
applicable for each device type.

All Android device implementations that do not fit into any of the described device types MUST sitill
meet all requirements in the other sections of this Compatibility Definition.

2.1 Device Configurations

For the major differences in hardware configuration by device type, see the device-specific
requirements that follow in this section.

2.2. Handheld Requirements

An Android Handheld device refers to an Android device implementation that is typically used by
holding it in the hand, such as an mp3 player, phone, or tablet.

Android device implementations are classified as a Handheld if they meet all the following criteria:

e Have a power source that provides mobility, such as a battery.
e Have a physical diagonal screen size in the range of 2.5 to 8 inches.

The additional requirements in the rest of this section are specific to Android Handheld device
implementations.

. Note: Requirements that do not apply to Android Tablet devices are marked with an *.

2.2.1. Hardware

Screen Size (Section 7.1.1.1)

Handheld device implementations:
e [H-0-1] MUST have a screen at least 2.5 inches in physical diagonal size. *

Screen Density (Section 7.1.1.3)
Handheld device implementations:

e [H-SR] Are STRONGLY RECOMMENDED to provide users an affordance to change the

Page 7 of 122

display size.

Legacy Application Compatibility Mode (Section 7.1.5)
Handheld device implementations:

e [H-0-1] MUST include support for legacy application compatibility mode as implemented by
the upstream Android open source code. That is, device implementations MUST NOT alter
the triggers or thresholds at which compatibility mode is activated, and MUST NOT alter
the behavior of the compatibility mode itself.

Keyboard (Section 7.2.1)
Handheld device implementations:

e [H-0-1] MUST include support for third-party Input Method Editor (IME) applications.

Navigation Keys (Section 7.2.3)
Handheld device implementations:

e [H-0-1] MUST provide the Home, Recents, and Back functions.

e [H-0-2] MUST send both the normal and long press event of the the Back function (
KEYCODE BACK) to the foreground application.

Touchscreen Input (Section 7.2.4)
Handheld device implementations:

e [H-0-1] MUST support touchscreen input.

Accelerometer (Section 7.3.1)
Handheld device implementations:

e [H-SR] Are STRONGLY RECOMMENDED to include a 3-axis accelerometer.

If Handheld device implementations include a 3-axis accelerometer, they:

e [H-1-1] MUST be able to report events up to a frequency of at least 100 Hz.

Gyroscope (Section 7.3.4)
If Handheld device implementations include a gyroscope, they:

e [H-1-1] MUST be able to report events up to a frequency of at least 100 Hz.

Proximity Sensor (Section 7.3.8)

Handheld device implementations that can make a voice call and indicate any value other than
PHONE TYPE NONE in getPhoneType :

e SHOULD include a proximity sensor.

Pose Sensor (Section 7.3.12)
Handheld device implementations:

e Are RECOMMENDED to support pose sensor with 6 degrees of freedom.

Page 8 of 122

http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK

Bluetooth (Section 7.4.3)
Handheld device implementations:

e SHOULD include support for Bluetooth and Bluetooth LE.

Data Saver (Section 7.4.7)
If Handheld device implementations include a metered connection, they:

e [H-1-1] MUST provide the data saver mode.

Minimum Memory and Storage (Section 7.6.1)
If Handheld device implementations declare support of only a 32-bit ABI:

e [H-1-1] The memory available to the kernel and userspace MUST be at least 416MB if the
default display uses framebuffer resolutions up to gHD (e.g. FWVGA).

e [H-2-1] The memory available to the kernel and userspace MUST be at least 592MB if the
default display uses framebuffer resolutions up to HD+ (e.g. HD, WSVGA).

e [H-3-1] The memory available to the kernel and userspace MUST be at least 896MB if the
default display uses framebuffer resolutions up to FHD (e.g. WSXGA+).

e [H-4-1] The memory available to the kernel and userspace MUST be at least 1344MB if
the default display uses framebuffer resolutions up to QHD (e.g. QWXGA).

If Handheld device implementations declare support of 32-bit and 64-bit ABls:

e [H-5-1] The memory available to the kernel and userspace MUST be at least 816MB if the
default display uses framebuffer resolutions up to gHD (e.g. FWVGA).

e [H-6-1] The memory available to the kernel and userspace MUST be at least 944MB if the
default display uses framebuffer resolutions up to HD+ (e.g. HD, WSVGA).

e [H-7-1] The memory available to the kernel and userspace MUST be at least 1280MB if
the default display uses framebuffer resolutions up to FHD (e.g. WSXGA+).

e [H-8-1] The memory available to the kernel and userspace MUST be at least 1824MB if
the default display uses framebuffer resolutions up to QHD (e.g. QWXGA).

Note that the "memory available to the kernel and userspace" above refers to the memory space
provided in addition to any memory already dedicated to hardware components such as radio, video,
and so on that are not under the kernel’s control on device implementations.

If Handheld device implementations include less than or equal to 1GB of memory available to the
kernel and userspace, they:

e [H-9-1] MUST declare the feature flag android.hardware.ram.low .
e [H-9-2] MUST have at least 1.1 GB of non-volatile storage for application private data
(a.k.a. "/data" partition).

If Handheld device implementations include more than 1GB of memory available to the kernel and
userspace, they:

e [H-10-1] MUST have at least 4GB of non-volatile storage available for application private
data (a.k.a. "/data" partition).

e SHOULD declare the feature flag android.hardware.ram.normal .

Page 9 of 122

https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_RAM_LOW
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_RAM_NORMAL

Application Shared Storage (Section 7.6.2)
Handheld device implementations:

e [H-0-1] MUST NOT provide an application shared storage smaller than 1 GiB.

USB peripheral mode (Section 7.7.1)
Handheld device implementations:

e SHOULD include a USB port supporting peripheral mode.
If handheld device implementations include a USB port supporting peripheral mode, they:
e [H-1-1] MUST implement the Android Open Accessory (AOA) API.

Microphone (Section 7.8.1)
Handheld device implementations:

e [H-0-1] MUST include a microphone.

Audio Output (Section 7.8.2)
Handheld device implementations:

e [H-0-1] MUST have an audio output and declare android.hardware.audio.output .

Virtual Reality Mode (Section 7.9.1)
If Handheld device implementations include support for the VR mode, they:

e [H-1-1] MUST declare the android.software.vr.mode feature. *

If device implementations declare android.software.vr.mode feature, they:

e [H-2-1] MUST include an application implementing android.service.vr.VrListenerService that
can be enabled by VR applications via android.app.Activity#setVrModeEnabled . *

Virtual Reality High Performance (Section 7.9.2)

If Handheld device implementations are capable of meeting all the requirements to declare the
android.hardware.vr.high performance feature flag, they:

e [H-1-1] MUST declare the android.hardware.vr.high performance feature flag. *
2.2.2. Multimedia

Audio Encoding (Section 5.1.1)
Handheld device implementations MUST support the following audio encoding:

e [H-0-1] AMR-NB

e [H-0-2] AMR-WB

e [H-0-3] MPEG-4 AAC Profile (AAC LC)

e [H-0-4] MPEG-4 HE AAC Profile (AAC+)

e [H-0-5] AAC ELD (enhanced low delay AAC)

Page 10 of 122

Audio Decoding (Section 5.1.2)
Handheld device implementations MUST support the following audio decoding:

e [H-0-1] AMR-NB
e [H-0-2] AMR-WB

Video Encoding (Section 5.2)
Handheld device implementations MUST support the following video encoding and make it available
to third-party applications:

e [H-0-1] H.264 AVC

e [H-0-2] VP8

Video Decoding (Section 5.3)
Handheld device implementations MUST support the following video decoding:

e [H-0-1] H.264 AVC.
e [H-0-2] H.265 HEVC.
e [H-0-3] MPEG-4 SP.
e [H-0-4] VP8.

e [H-0-5] VP9.

2.2.3. Software

WebView Compatibility (Section 3.4.1)
Handheld device implementations:

e [H-0-1] MUST provide a complete implementation of the android.webkit.Webview API.

Browser Compatibility (Section 3.4.2)
Handheld device implementations:

e [H-0-1] MUST include a standalone Browser application for general user web browsing.

Launcher (Section 3.8.1)
Handheld device implementations:

e [H-SR] Are STRONGLY RECOMMENDED to implement a default launcher that supports
in-app pinning of shortcuts and widgets.

e [H-SR] Are STRONGLY RECOMMENDED to implement a default launcher that provides
quick access to the additional shortcuts provided by third-party apps through the
ShortcutManager API.

e [H-SR] Are STRONGLY RECOMMENDED to include a default launcher app that shows
badges for the app icons.

Widgets (Section 3.8.2)
Handheld device implementations:

e [H-SR] Are STRONGLY RECOMMENDED to support third-party app widgets.

Page 11 of 122

https://developer.android.com/reference/android/content/pm/ShortcutManager.html

Notifications (Section 3.8.3)
Handheld device implementations:

e [H-0-1] MUST allow third-party apps to notify users of notable events through the
Notification and NotificationManager API classes.

e [H-0-2] MUST support rich notifications.
e [H-0-3] MUST support heads-up notifications.

e [H-0-4] MUST include a notification shade, providing the user the ability to directly control
(e.g. reply, snooze, dismiss, block) the notifications through user affordance such as action
buttons or the control panel as implemented in the AOSP.

Search (Section 3.8.4)
Handheld device implementations:

e [H-SR] Are STRONGLY RECOMMENDED to implement an assistant on the device to
handle the Assist action .

Lock Screen Media Control (Section 3.8.10)
If Android Handheld device implementations support a lock screen,they:

e [H-1-1] MUST display the Lock screen Notifications including the Media Notification
Template.

Device administration (Section 3.9)
If Handheld device implementations support a secure lock screen, they:

e [H-1-1] MUST implement the full range of device administration policies defined in the
Android SDK documentation.

Accessibility (Section 3.10)
Handheld device implementations:

e [H-SR] MUST support third-party accessibility services.

e [H-SR] Are STRONGLY RECOMMENDED to preload accessibility services on the device
comparable with or exceeding functionality of the Switch Access and TalkBack (for
languages supported by the preloaded Text-to-speech engine) accessibility services as
provided in the talkback open source project .

Text-to-Speech (Section 3.11)
Handheld device implementations:

e [H-0-1] MUST support installation of third-party TTS engines.

e [H-SR] Are STRONGLY RECOMMENDED to include a TTS engine supporting the
languages available on the device.

Quick Settings (Section 3.13)
Handheld device implementations:

e [H-SR] Are STRONGLY RECOMMENDED to include a Quick Settings Ul component.

Companion Device Pairing (Section 3.15)

Page 12 of 122

https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
http://developer.android.com/guide/topics/admin/device-admin.html
https://github.com/google/talkback

If Android handheld device implementations declare FEATURE BLUETOOTH or FEATURE WIFI
support, they:

e [H-1-1] MUST support the companion device pairing feature.
2.2.4. Performance and Power

User Experience Consistency (Section 8.1)
For handheld device implementations:

e [H-0-1] Consistent frame latency . Inconsistent frame latency or a delay to render frames
MUST NOT happen more often than 5 frames in a second, and SHOULD be below 1
frames in a second.

e [H-0-2] User interface latency . Device implementations MUST ensure low latency user
experience by scrolling a list of 10K list entries as defined by the Android Compatibility
Test Suite (CTS) in less than 36 secs.

e [H-0-3] Task switching . When multiple applications have been launched, re-launching an
already-running application after it has been launched MUST take less than 1 second.

File I/0 Access Performance (Section 8.2)
Handheld device implementations:

e [H-0-1] MUST ensure a sequential write performance of at least 5 MB/s.
e [H-0-2] MUST ensure a random write performance of at least 0.5 MB/s.
e [H-0-3] MUST ensure a sequential read performance of at least 15 MB/s.
e [H-0-4] MUST ensure a random read performance of at least 3.5 MB/s.

Power-Saving Modes (Section 8.3)
For handheld device implementations:

e [H-0-1] All Apps exempted from App Standby and Doze power-saving modes MUST be
made visible to the end user.

e [H-0-2] The triggering, maintenance, wakeup algorithms and the use of global system
settings of App Standby and Doze power-saving modes MUST not deviate from the
Android Open Source Project.

Power Consumption Accounting (Sections 8.4)
Handheld device implementations:

e [H-0-1] MUST provide a per-component power profile that defines the current consumption
value for each hardware component and the approximate battery drain caused by the
components over time as documented in the Android Open Source Project site.

e [H-0-2] MUST report all power consumption values in milliampere hours (mAh).

e [H-0-3] MUST report CPU power consumption per each process's UID. The Android Open
Source Project meets the requirement through the uid_cputime kernel module
implementation.

e [H-0-4] MUST make this power usage available via the adb shell dumpsys batterystats shell
command to the app developer.

e SHOULD be attributed to the hardware component itself if unable to attribute hardware
component power usage to an application.

If Handheld device implementations include a screen or video output, they:

Page 13 of 122

http://source.android.com/devices/tech/power/values.html
http://source.android.com/devices/tech/power/batterystats.html

e [H-1-1] MUST honor the android.intent.action. POWER USAGE _SUMMARY intent and
display a settings menu that shows this power usage.

2.2.5. Security Model

Permissions (Sections 9.1)
Handheld device implementations:

e [H-0-1] MUST allow third-party apps to access the usage statistics via the
android.permission.PACKAGE _USAGE_STATS permission and provide a user-accessible
mechanism to grant or revoke access to such apps in response to the
android.settings. ACTION_USAGE_ACCESS_SETTINGS intent.

2.3. Television Requirements

An Android Television device refers to an Android device implementation that is an entertainment
interface for consuming digital media, movies, games, apps, and/or live TV for users sitting about ten
feet away (a “lean back” or “10-foot user interface”).

Android device implementations are classified as a Television if they meet all the following criteria:

e Have provided a mechanism to remotely control the rendered user interface on the display
that might sit ten feet away from the user.

e Have an embedded screen display with the diagonal length larger than 24 inches OR
include a video output port, such as VGA, HDMI, DisplayPort or a wireless port for display.

The additional requirements in the rest of this section are specific to Android Television device
implementations.

2.3.1. Hardware

Non-touch Navigation (Section 7.2.2)
Television device implementations:

e [T-0-1] MUST support D-pad .

Navigation Keys (Section 7.2.3)
Television device implementations:

e [T-0-1] MUST provide the Home and Back functions.

e [T-0-2] MUST send both the normal and long press event of the the Back function (
KEYCODE_BACK) to the foreground application.

Button Mappings (Section 7.2.6.1)
Television device implementations:

e [T-0-1] MUST include support for game controllers and declare the
android.hardware.gamepad feature flag.

Remote Control (Section 7.2.7)
Television device implementations:

e SHOULD provide a remote control from which users can access non-touch navigation and

OﬂdfOld Page 14 of 122

http://developer.android.com/reference/android/content/Intent.html#ACTION_POWER_USAGE_SUMMARY
https://developer.android.com/reference/android/provider/Settings.html#ACTION_USAGE_ACCESS_SETTINGS
https://developer.android.com/reference/android/content/res/Configuration.html#NAVIGATION_DPAD
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK

core navigation keys inputs.

Gyroscope (Section 7.3.4)
If Television device implementations include a gyroscope, they:

e [T-1-1] MUST be able to report events up to a frequency of at least 100 Hz.

Bluetooth (Section 7.4.3)
Television device implementations:

e [T-0-1] MUST support Bluetooth and Bluetooth LE.

Minimum Memory and Storage (Section 7.6.1)
Television device implementations:

e [T-0-1] MUST have at least 4GB of non-volatile storage available for application private
data (a.k.a. "/data" partition)

e [T-0-2] MUST return “true” for ActivityManager.isLowRamDevice() when there is less than
1GB of memory available to the kernel and userspace.

Microphone (Section 7.8.1)
Television device implementations:

e SHOULD include a microphone.

Audio Output (Section 7.8.2)
Television device implementations:

e [T-0-1] MUST have an audio output and declare android.hardware.audio.output .

2.3.2. Multimedia

Audio Encoding (Section 5.1)
Television device implementations MUST support the following audio encoding:

e [T-0-1] MPEG-4 AAC Profile (AAC LC)
e [T-0-2] MPEG-4 HE AAC Profile (AAC+)
e [T-0-3] AAC ELD (enhanced low delay AAC)

Video Encoding (Section 5.2)
Television device implementations MUST support the following video encoding:

e [T-0-1] H.264 AVC
e [T-0-2] VP8

H-264 (Section 5.2.2)
Television device implementations are:

e [T-SR] STRONGLY RECOMMENDED to support H.264 encoding of 720p and 1080p
resolution videos.

e [T-SR] STRONGLY RECOMMENDED to support H.264 encoding of 1080p resolution
video at 30 frame-per-second (fps).

Page 15 of 122

Video Decoding (Section 5.3)
Television device implementations MUST support the following video decoding:

e [T-0-1] H.264 AVC
e [T-0-2] H.265 HEVC
e [T-0-3] MPEG-4 SP
o [T-0-4] VP8

e [T-0-5] VP9

Television device implementations are STRONGLY RECOMMENDED to support the following video
decoding:

e [T-SR] MPEG-2

H.264 (Section 5.3.4)
If Television device implementations support H.264 decoders, they:

e [T-1-1] MUST support High Profile Level 4.2 and the HD 1080p (at 60 fps) decoding
profile.

e [T-1-2] MUST be capable of decoding videos with both HD profiles as indicated in the
following table and encoded with either the Baseline Profile, Main Profile, or the High
Profile Level 4.2

H.265 (HEVC) (Section 5.3.5)
If Television device implementations support H.265 codec and the HD 1080p decoding profile, they:

e [T-1-1] MUST support the Main Profile Level 4.1 Main tier.

e [T-SR] Are STRONGLY RECOMMENDED to support 60 fps video frame rate for HD
1080p.

If Television device implementations support H.265 codec and the UHD decoding profile, then:
e [T-2-1] The codec MUST support Main10 Level 5 Main Tier profile.

VP8 (Section 5.3.6)
If Television device implementations support VP8 codec, they:

e [T-1-1] MUST support the HD 1080p60 decoding profile.

If Television device implementations support VP8 codec and support 720p, they:

e [T-2-1] MUST support the HD 720p60 decoding profile.

VP9 (Section 5.3.7)
If Television device implementations support VP9 codec and the UHD video decoding, they:

e [T-1-1] MUST support 8-bit color depth and SHOULD support VP9 Profile 2 (10-bit).

If Television device implementations support VP9 codec, the 1080p profile and VP9 hardware
decoding, they:

Page 16 of 122

e [T-2-1] MUST support 60 fps for 1080p.

Secure Media (Section 5.8)
If device implementations are Android Television devices and support 4K resolution, they:

e [T-1-1] MUST support HDCP 2.2 for all wired external displays.

If Television device implementations don't support 4K resolution, they:

e [T-2-1] MUST support HDCP 1.4 for all wired external displays.

Television device implementations:

e [T-SR] Are STRONGLY RECOMMENDED to support simulataneous decoding of secure
streams. At minimum, simultaneous decoding of two steams is STRONGLY
RECOMMENDED.

Audio Output Volume (Section 5.5.3)
Television device implementations:

e [T-0-1] MUST include support for system Master Volume and digital audio output volume

attenuation on supported outputs, except for compressed audio passthrough output (where
no audio decoding is done on the device).

2.3.3. Software

Television device implementations:

e [T-0-1] MUST declare the features android.software.leanback and
android.hardware.type.television .

WebView compatibility (Section 3.4.1)
Television device implementations:

e [T-0-1] MUST provide a complete implementation of the android.webkit.Webview API.

Lock Screen Media Control (Section 3.8.10)
If Android Television device implementations support a lock screen,they:

e [T-1-1] MUST display the Lock screen Notifications including the Media Notification
Template.

Multi-windows (Section 3.8.14)
Television device implementations:

o [T-SR] Are STRONGLY RECOMMENDED to support picture-in-picture (PIP) mode multi-
window.

Accessibility (Section 3.10)
Television device implementations:

e [T-SR] MUST support third-party accessibility services.

Page 17 of 122

http://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_LEANBACK

e [T-SR] Android Television device implementations are STRONGLY RECOMMENDED to
preload accessibility services on the device comparable with or exceeding functionality of
the Switch Access and TalkBack (for languages supported by the preloaded Text-to-
speech engine) accessibility services as provided in the talkback open source project .

Text-to-Speech (Section 3.11)
If device implementations report the feature android.hardware.audio.output, they:

e [T-SR] STRONGLY RECOMMENDED to include a TTS engine supporting the languages
available on the device.

e [T-0-1] MUST support installation of third-party TTS engines.

TV Input Framework (Section 3.12)
Television device implementations:

e [T-0-1] MUST support TV Input Framework.
2.2.4. Performance and Power

User Experience Consistency (Section 8.1)
For Television device implementations:

e [T-0-1] Consistent frame latency . Inconsistent frame latency or a delay to render frames
MUST NOT happen more often than 5 frames in a second, and SHOULD be below 1
frames in a second.

File I/0 Access Performance (Section 8.2)
Television device implementations:

e [T-0-1] MUST ensure a sequential write performance of at least 5SMB/s.
e [T-0-2] MUST ensure a random write performance of at least 0.5MB/s.
e [T-0-3] MUST ensure a sequential read performance of at least 15MB/s.
e [T-0-4] MUST ensure a random read performance of at least 3.5MB/s.

Power-Saving Modes (Section 8.3)
For Television device implementations:

e [T-0-1] All Apps exempted from App Standby and Doze power-saving modes MUST be
made visible to the end user.

e [T-0-2] The triggering, maintenance, wakeup algorithms and the use of global system
settings of App Standby and Doze power-saving modes MUST not deviate from the
Android Open Source Project.

Power Consumption Accounting (Sections 8.4)
Television device implementations:

e [T-0-1] MUST provide a per-component power profile that defines the current consumption
value for each hardware component and the approximate battery drain caused by the
components over time as documented in the Android Open Source Project site.

e [T-0-2] MUST report all power consumption values in milliampere hours (mAh).
e [T-0-3] MUST report CPU power consumption per each process's UID. The Android Open

Page 18 of 122

https://github.com/google/talkback
http://source.android.com/devices/tech/power/values.html

Source Project meets the requirement through the uid cputime kernel module
implementation.

e SHOULD be attributed to the hardware component itself if unable to attribute hardware
component power usage to an application.

e [T-0-4] MUST make this power usage available via the adb shell dumpsys batterystats shell
command to the app developer.

2.4. Watch Requirements

An Android Watch device refers to an Android device implementation intended to be worn on the
body, perhaps on the wrist.

Android device implementations are classified as a Watch if they meet all the following criteria:

e Have a screen with the physical diagonal length in the range from 1.1 to 2.5 inches.
e Have a mechanism provided to be worn on the body.

The additional requirements in the rest of this section are specific to Android Watch device
implementations.

2.4.1. Hardware

Screen Size (Section 7.1.1.1)
Watch device implementations:

e [W-0-1] MUST have a screen with the physical diagonal size in the range from 1.1 to 2.5
inches.

Navigation Keys (Section 7.2.3)
Watch device implementations:

e [W-0-1] MUST have the Home function available to the user, and the Back function except
for when it is in UL MODE_TYPE WATCH .

Touchscreen Input (Section 7.2.4)
Watch device implementations:

e [W-0-2] MUST support touchscreen input.

Accelerometer (Section 7.3.1)
Watch device implementations:

e [W-SR] Are STRONGLY RECOMMENDED to include a 3-axis accelerometer.

Bluetooth (Section 7.4.3)
Watch device implementations:

e [W-0-1] MUST support Bluetooth.

Minimum Memory and Storage (Section 7.6.1)
Watch device implementations:

e [W-0-1] MUST have at least 1GB of non-volatile storage available for application private

Page 19 of 122

http://source.android.com/devices/tech/power/batterystats.html

data (a.k.a. "/data" partition)
e [W-0-2] MUST have at least 416MB memory available to the kernel and userspace.

Microphone (Section 7.8.1)
Watch device implementations:

e [W-0-1] MUST include a microphone.

Audio Output (Section 7.8.1)
Watch device implementations:

e MAY but SHOULD NOT have audio output.
2.4.2. Multimedia
No additional requirements.
2.4.3. Software

Watch device implementations:

e [W-0-1] MUST declare the feature android.hardware.type.watch.
e [W-0-2] MUST support uiMode = Ul MODE_TYPE_WATCH .

Search (Section 3.8.4)
Watch device implementations:

o [W-SR] Are STRONGLY RECOMMENDED to implement an assistant on the device to
handle the Assist action .

Accessibility (Section 3.10)
Watch device implementations that declare the android.hardware.audio.output feature flag:

e [W-1-1] MUST support third-party accessibility services.

e [W-SR] Are STRONGLY RECOMMENDED to preload accessibility services on the device
comparable with or exceeding functionality of the Switch Access and TalkBack (for
languages supported by the preloaded Text-to-speech engine) accessibility services as
provided in the talkback open source project .

Text-to-Speech (Section 3.11)
If Watch device implementations report the feature android.hardware.audio.output, they:

e [W-SR] Are STRONGLY RECOMMENDED to include a TTS engine supporting the
languages available on the device.

e [W-0-1] MUST support installation of third-party TTS engines.

2.5. Automotive Requirements

Android Automotive implementation refers to a vehicle head unit running Android as an operating
system for part or all of the system and/or infotainment functionality.

OﬁdfOld Page 20 of 122

http://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_WATCH
http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
https://github.com/google/talkback

Android device implementations are classified as an Automotive if they declare the feature
android.hardware.type.automotive or meet all the following criteria.

e Are embedded as part of, or pluggable to, an automotive vehicle.
e Are using a screen in the driver's seat row as the primary display.

The additional requirements in the rest of this section are specific to Android Automotive device
implementations.

2.5.1. Hardware

Screen Size (Section 7.1.1.1)

Automotive device implementations:

e [A-0-1] MUST have a screen at least 6 inches in physical diagonal size.
e [A-0-2] MUST have a screen size layout of at least 750 dp x 480 dp.

Navigation Keys (Section 7.2.3)
Automotive device implementations:

e [A-0-1] MUST provide the Home function and MAY provide Back and Recent functions.

e [A-0-2] MUST send both the normal and long press event of the the Back function (
KEYCODE BACK) to the foreground application.

Accelerometer (Section 7.3.1)
Automotive device implementations:

e [A-SR] Are STRONGLY RECOMMENDED to include a 3-axis accelerometer.

If Automotive device implementations include a 3-axis accelerometer, they:

e [A-1-1] MUST be able to report events up to a frequency of at least 100 Hz.
e [A-1-2] MUST comply with the Android car sensor coordinate system .

GPS (Section 7.3.3)

If Automotive device implementations include a GPS/GNSS receiver and report the capability to
applications through the android.hardware.location.gps feature flag:

e [A-1-1] GNSS technology generation MUST be the year "2017" or newer.

Gyroscope (Section 7.3.4)
If Automotive device implementations include a gyroscope, they:

e [A-1-11 MUST be able to report events up to a frequency of at least 100 Hz.

Android Automotive-only sensors (Section 7.3.11) Current Gear (Section 7.3.11.1)
Automotive device implementations:

e SHOULD provide current gear as SENSOR _TYPE_GEAR .

Day Night Mode (Section 7.3.11.2)
Automotive device implementations:

Page 21 of 122

http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK
http://source.android.com/devices/sensors/sensor-types.html#auto_axes

e [A-0-1] MUST support day/night mode defined as SENSOR TYPE NIGHT .

e [A-0-2] The value of the SENSOR_TYPE NIGHT flag MUST be consistent with dashboard
day/night mode and SHOULD be based on ambient light sensor input.

e The underlying ambient light sensor MAY be the same as Photometer .

Driving Status (Section 7.3.11.3)
Automotive device implementations:

e [A-0-1] MUST support driving status defined as SENSOR_TYPE DRIVING STATUS , with
a default value of DRIVE_STATUS UNRESTRICTED when the vehicle is fully stopped and
parked. It is the responsibility of device manufacturers to configure
SENSOR_TYPE DRIVING STATUS in compliance with all laws and regulations that apply
to markets where the product is shipping.

Wheel Speed (Section 7.3.11.4)
Automotive device implementations:

e [A-0-1] MUST provide vehicle speed defined as SENSOR_TYPE_CAR_SPEED .

Bluetooth (Section 7.4.3)
Automotive device implementations:

e [A-0-1] MUST support Bluetooth and SHOULD support Bluetooth LE.

e [A-0-2] Android Automotive implementations MUST support the following Bluetooth
profiles:
o Phone calling over Hands-Free Profile (HFP).
o Media playback over Audio Distribution Profile (A2DP).
o Media playback control over Remote Control Profile (AVRCP).
o Contact sharing using the Phone Book Access Profile (PBAP).

e SHOULD support Message Access Profile (MAP).

Minimum Network Capability (Section 7.4.5)
Automotive device implementations:

e SHOULD include support for cellular network based data connectivity.

Minimum Memory and Storage (Section 7.6.1)
Automotive device implementations:

e [A-0-1] MUST have at least 4GB of non-volatile storage available for application private
data (a.k.a. "/data" partition)

USB peripheral mode (Section 7.7.1)
Automotive device implementations:

e SHOULD include a USB port supporting peripheral mode.

Microphone (Section 7.8.1)
Automotive device implementations:

e [A-0-1] MUST include a microphone.

Page 22 of 122

Audio Output (Section 7.8.2)
Automotive device implementations:

e [A-0-1] MUST have an audio output and declare android.hardware.audio.output .
2.5.2. Multimedia

Audio Encoding (Section 5.1)
Automotive device implementations MUST support the following audio encoding:

o [A-1-1] MPEG-4 AAC Profile (AAC LC)
e [A-1-2] MPEG-4 HE AAC Profile (AAC+)
e [A-1-3] AAC ELD (enhanced low delay AAC)

Video Encoding (Section 5.2)
Automotive device implementations MUST support the following video encoding:

e [A-0-1]H.264 AVC
o [A-0-2] VP8

Video Decoding (Section 5.3)
Automotive device implementations MUST support the following video decoding:

o [A-0-1] H.264 AVC
e [A-0-2] MPEG-4 SP
o [A-0-3] VP8
e [A-0-4] VP9

Automotive device implementations are STRONGLY RECOMMENDED to support the following video
decoding:

e [A-SR] H.265 HEVC
2.5.3. Software

Automotive device implementations:

e [A-0-1] MUST declare the feature android.hardware.type.automotive.
o [A-0-2] MUST support uiMode = Ul_ MODE_TYPE_CAR .

e [A-0-3] Android Automotive implementations MUST support all public APls in the
android.car.* namespace.

WebView Compatibility (Section 3.4.1)
Automotive device implementations:

e [A-0-1] MUST provide a complete implementation of the android.webkit.Webview API .

Notifications (Section 3.8.3)
Android Automotive device implementations:

e [A-0-1] MUST display notifications that use the Notification.CarExtender APl when

Page 23 of 122

http://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_CAR
https://developer.android.com/reference/android/app/Notification.CarExtender.html

requested by third-party applications.

Search (Section 3.8.4)
Automotive device implementations:

e [A-0-1] MUST implement an assistant on the device to handle the Assist action .

Media Ul (Section 3.14)
Automotive device implementations:

e [A-0-1] MUST include a Ul framework to support third-party apps using the media APIs as
described in section 3.14.

2.2.4. Performance and Power

Power-Saving Modes (Section 8.3)
For Automotive device implementations:

o [A-0-1] All Apps exempted from App Standby and Doze power-saving modes MUST be
made visible to the end user.

e [A-0-2] The triggering, maintenance, wakeup algorithms and the use of global system
settings of App Standby and Doze power-saving modes MUST not deviate from the
Android Open Source Project.

Power Consumption Accounting (Sections 8.4)
Automotive device implementations:

e [A-0-1] MUST provide a per-component power profile that defines the current consumption
value for each hardware component and the approximate battery drain caused by the
components over time as documented in the Android Open Source Project site.

e [A-0-2] MUST report all power consumption values in milliampere hours (mAh).

o [A-0-3] MUST report CPU power consumption per each process's UID. The Android Open
Source Project meets the requirement through the uid_cputime kernel module
implementation.

e SHOULD be attributed to the hardware component itself if unable to attribute hardware
component power usage to an application.

e [A-0-4] MUST make this power usage available via the adb shell dumpsys batterystats shell
command to the app developer.

2.2.5. Security Model

Multi-User Support (Section 9.5)
If Automotive device implementations include multiple users, they:

e [A-1-1] MUST include a guest account that allows all functions provided by the vehicle
system without requiring a user to log in.

Automotive Vehicle System Isolation (Section 9.14)
Automotive device implementations:

e [A-0-1] MUST gatekeep messages from Android framework vehicle subsystems, e.g.,
whitelisting permitted message types and message sources.

Page 24 of 122

http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
http://source.android.com/devices/tech/power/values.html
http://source.android.com/devices/tech/power/batterystats.html

e [A-0-2] MUST watchdog against denial of service attacks from the Android framework or
third-party apps. This guards against malicious software flooding the vehicle network with
traffic, which may lead to malfunctioning vehicle subsystems.

2.6. Tablet Requirements

An Android Tablet device refers to an Android device implementation that is typically used by holding
in both hands and not in a clamshell form-factor.

Android device implementations are classified as a Tablet if they meet all the following criteria:

e Have a power source that provides mobility, such as a battery.
e Have a physical diagonal screen size in the range of 7 to 18 inches.

Tablet device implementations have similar requirements to handheld device implementations. The
exceptions are in indicated by and * in that section and noted for reference in this section.

2.4.1. Hardware

Screen Size (Section 7.1.1.1)

Tablet device implementations:

e [Ta-0-1] MUST have a screen in the range of 7 to 18 inches.

Minimum Memory and Storage (Section 7.6.1)

The screen densities listed for small/normal screens in the handheld requirements are not applicable
to tablets.

USB peripheral mode (Section 7.7.1)
If handheld device implementations include a USB port supporting peripheral mode, they:

e MAY implement the Android Open Accessory (AOA) API.

Virtual Reality Mode (Section 7.9.1)
Virtual Reality High Performance (Section 7.9.2)
Virtual reality requirements are not applicable to tablets.

3. Software

3.1. Managed APl Compatibility

The managed Dalvik bytecode execution environment is the primary vehicle for Android applications.
The Android application programming interface (API) is the set of Android platform interfaces exposed
to applications running in the managed runtime environment.

e [C-0-1] Device implementations MUST provide complete implementations, including all
documented behaviors, of any documented API exposed by the Android SDK or any API
decorated with the “@SystemApi” marker in the upstream Android source code.

e [C-0-2] Device implementations MUST support/preserve all classes, methods, and
associated elements marked by the TestApi annotation (@TestApi).

e [C-0-3] Device implementations MUST NOT omit any managed APIs, alter API interfaces
or signatures, deviate from the documented behavior, or include no-ops, except where

f 1M \ (O f) Page 25 of 122

http://developer.android.com/reference/packages.html

specifically allowed by this Compatibility Definition.

e [C-0-4] Device implementations MUST still keep the APIs present and behave in a
reasonable way, even when some hardware features for which Android includes APls are
omitted. See section 7 for specific requirements for this scenario.

3.1.1. Android Extensions

Android includes the support of extending the managed APIs while keeping the same API level
version.

e [C-0-1] Android device implementations MUST preload the AOSP implementation of both
the shared library ExtShared and services ExtServices with versions higher than or equal to
the minimum versions allowed per each API level. For example, Android 7.0 device
implementations, running API level 24 MUST include at least version 1.

3.2. Soft APl Compatibility

In addition to the managed APIs from section 3.1 , Android also includes a significant runtime-only
“soft” API, in the form of such things as intents, permissions, and similar aspects of Android
applications that cannot be enforced at application compile time.

3.2.1. Permissions

o [C-0-1] Device implementers MUST support and enforce all permission constants as
documented by the Permission reference page . Note that section 9 lists additional
requirements related to the Android security model.

3.2.2. Build Parameters

The Android APls include a number of constants on the android.os.Build class that are intended to
describe the current device.

e [C-0-1] To provide consistent, meaningful values across device implementations, the table
below includes additional restrictions on the formats of these values to which device
implementations MUST conform.

Parameter Details
The version of the currently-executing Android system, in human-
VERSION.RELEASE readable format. This field MUST have one of the string values
’ defined in 8.1 .

The version of the currently-executing Android system, in a format
VERSION.SDK accessible to third-party application code. For Android 8.1, this field
MUST have the integer value 8.1_INT.

The version of the currently-executing Android system, in a format
VERSION.SDK_INT accessible to third-party application code. For Android 8.1, this field
MUST have the integer value 8.1_INT.

A value chosen by the device implementer designating the specific
build of the currently-executing Android system, in human-readable
format. This value MUST NOT be reused for different builds made

VERSION.INCREMENTAL | available to end users. A typical use of this field is to indicate which

OﬂdfOld Page 26 of 122

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/os/Build.html
http://source.android.com/compatibility/8.1/versions.html

build number or source-control change identifier was used to generate

the build. There are no requirements on the specific format of this
fiald er\nnl‘ H'v:i' ||' |\/|| |QT ’\lhT hc\ r\|||| ar-theo nmr\ v/ otringo (""\

T, CACCT Pt Ot LIIU Crrpty—otr

A value chosen by the deV|ce |mplementer identifying the specific
internal hardware used by the device, in human-readable format. A
BOARD possible use of this field is to indicate the specific revision of the board
powering the device. The value of this field MUST be encodable as 7-
bit ASCII and match the regular expression “A[a-zA-Z0-9_-]+$".

A value reflecting the brand name associated with the device as
known to the end users. MUST be in human-readable format and
SHOULD represent the manufacturer of the device or the company
brand under which the device is marketed. The value of this field
MUST be encodable as 7-bit ASCIlI and match the regular expression
“Na-zA-Z0-9_-1+$".

BRAND

The name of the instruction set (CPU type + ABI convention) of native

SUPPORTED_ABIS code. See section 3.3. Native APl Compatibility .

The name of the instruction set (CPU type + ABI convention) of native

SUPPORTED_32_BIT_ABIS code. See section 3.3. Native APl Compatibility .

The name of the second instruction set (CPU type + ABI convention)
SUPPORTED_64_BIT_ABIS| of native code. See section 3.3. Native API Compatibility .

The name of the instruction set (CPU type + ABI convention) of native

CPU_ABI code. See section 3.3. Native API Compatibility .

The name of the second instruction set (CPU type + ABI convention)

CPU_ABI2 of native code. See section 3.3. Native AP| Compatibility .

A value chosen by the device implementer containing the
development name or code name identifying the configuration of the
hardware features and industrial design of the device. The value of
this field MUST be encodable as 7-bit ASCIl and match the regular
expression “Ma-zA-Z0-9_-]+$". This device name MUST NOT change
during the lifetime of the product.

DEVICE

A string that uniquely identifies this build. It SHOULD be reasonably
human-readable. It MUST follow this template:

$(BRAND)/$(PRODUCT)/
$(DEVICE):$(VERSION.RELEASE)/$(ID)/$(VERSION.INCREMENTAL):$(TYPE)/$(TAGS)

For example:

FINGERPRINT acme/myproduct/

mydevice:8.1/LMYXX/3359:userdebug/test-keys
The fingerprint MUST NOT include whitespace characters. If other
fields included in the template above have whitespace characters,
they MUST be replaced in the build fingerprint with another character,
such as the underscore ("_") character. The value of this field MUST
be encodable as 7-bit ASCII.

The name of the hardware (from the kernel command line or /proc). It
SHOULD be reasonably human-readable. The value of this field
MUST be encodable as 7-bit ASCIlI and match the regular expression
“Na-zA-Z0-9_-1+$".

HARDWARE

A string that uniquely identifies the host the build was built on, in

human-readable format. There are no requirements on the specific
HOST

OﬂdfOld Page 27 of 122

format of this field, except that it MUST NOT be null or the empty
string ("").

An identifier chosen by the device implementer to refer to a specific
release, in human-readable format. This field can be the same as
android.os.Build.VERSION.INCREMENTAL, but SHOULD be a value
sufficiently meaningful for end users to distinguish between software
builds. The value of this field MUST be encodable as 7-bit ASCII and
match the regular expression “Ma-zA-Z0-9. -]+$".

MANUFACTURER

The trade name of the Original Equipment Manufacturer (OEM) of the
product. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string (™). This field
MUST NOT change during the lifetime of the product.

MODEL

A value chosen by the device implementer containing the name of the
device as known to the end user. This SHOULD be the same name
under which the device is marketed and sold to end users. There are
no requirements on the specific format of this field, except that it
MUST NOT be null or the empty string (""). This field MUST NOT
change during the lifetime of the product.

PRODUCT

A value chosen by the device implementer containing the
development name or code name of the specific product (SKU) that
MUST be unique within the same brand. MUST be human-readable,
but is not necessarily intended for view by end users. The value of this
field MUST be encodable as 7-bit ASCIlI and match the regular
expression “Ma-zA-Z0-9_-]+$". This product name MUST NOT change
during the lifetime of the product.

SERIAL

A hardware serial number, which MUST be available and unique
across devices with the same MODEL and MANUFACTURER. The
value of this field MUST be encodable as 7-bit ASCIl and match the
regular expression “*[a-zA-Z0-91{6,20})$".

TAGS

A comma-separated list of tags chosen by the device implementer
that further distinguishes the build. This field MUST have one of the
values corresponding to the three typical Android platform signing
configurations: release-keys, dev-keys, test-keys.

TIME

A value representing the timestamp of when the build occurred.

TYPE

A value chosen by the device implementer specifying the runtime
configuration of the build. This field MUST have one of the values
corresponding to the three typical Android runtime configurations:
user, userdebug, or eng.

USER

A name or user ID of the user (or automated user) that generated the
build. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string (™).

SECURITY_PATCH

A value indicating the security patch level of a build. It MUST signify
that the build is not in any way vulnerable to any of the issues
described up through the designated Android Public Security Bulletin.
It MUST be in the format [YYYY-MM-DD], matching a defined string
documented in the Android Public Security Bulletin or in the Android
Security Advisory , for example "2015-11-01".

BASE_OS

android

A value representing the FINGERPRINT parameter of the build that is
otherwise identical to this build except for the patches provided in the
Android Public Security Bulletin. It MUST report the correct value and

Page 28 of 122

file:///gitc/manifest-rw/oc-mr1-dev/compatibility/cdd/source.android.com/security/bulletin
http://source.android.com/security/advisory

if such a build does not exist, report an empty string (™).

A value chosen by the device implementer identifying the specific
internal bootloader version used in the device, in human-readable
format. The value of this field MUST be encodable as 7-bit ASCII and
match the regular expression “Ma-zA-Z0-9._-]+$".

BOOTLOADER

MUST (be or return) a value chosen by the device implementer
identifying the specific internal radio/modem version used in the
device, in human-readable format. If a device does not have any
internal radio/modem it MUST return NULL. The value of this field
MUST be encodable as 7-bit ASCIlI and match the regular expression
“Na-zA-Z0-9. -]+$".

getRadioVersion()

3.2.3. Intent Compatibility
3.2.3.1. Core Application Intents

Android intents allow application components to request functionality from other Android components.
The Android upstream project includes a list of applications considered core Android applications,
which implements several intent patterns to perform common actions.

e [C-0-1] Device implementations MUST preload one or more applications or service
components with an intent handler, for all the public intent filter patterns defined by the
following core android applications in AOSP:

o Desk Clock

o Browser

o Calendar

o Contacts

o Gallery

o GlobalSearch
o Launcher

o Music

o Settings

3.2.3.2. Intent Resolution

e [C-0-1] As Android is an extensible platform, device implementations MUST allow each
intent pattern referenced in section 3.2.3.1 to be overridden by third-party applications. The
upstream Android open source implementation allows this by default.

e [C-0-2] Dvice implementers MUST NOT attach special privileges to system applications'
use of these intent patterns, or prevent third-party applications from binding to and
assuming control of these patterns. This prohibition specifically includes but is not limited to
disabling the “Chooser” user interface that allows the user to select between multiple
applications that all handle the same intent pattern.

e [C-0-3] Device implementations MUST provide a user interface for users to modify the
default activity for intents.

e However, device implementations MAY provide default activities for specific URI patterns
(e.g. http://play.google.com) when the default activity provides a more specific attribute for
the data URI. For example, an intent filter pattern specifying the data URI
“http://www.android.com” is more specific than the browser's core intent pattern for “http://”.

OﬂdfOld Page 29 of 122

https://developer.android.com/reference/android/os/Build.html#BOOTLOADER
https://developer.android.com/reference/android/os/Build.html#getRadioVersion()

Android also includes a mechanism for third-party apps to declare an authoritative default app linking
behavior for certain types of web URI intents. When such authoritative declarations are defined in an
app's intent filter patterns, device implementations:

e [C-0-4] MUST attempt to validate any intent filters by performing the validation steps
defined in the Digital Asset Links specification as implemented by the Package Manager in
the upstream Android Open Source Project.

e [C-0-5] MUST attempt validation of the intent filters during the installation of the application
and set all successfully validated UIR intent filters as default app handlers for their UIRs.

e MAY set specific URI intent filters as default app handlers for their URIs, if they are
successfully verified but other candidate URI filters fail verification. If a device
implementation does this, it MUST provide the user appropriate per-URI pattern overrides
in the settings menu.

o MUST provide the user with per-app App Links controls in Settings as follows:

o [C-0-6] The user MUST be able to override holistically the default app links
behavior for an app to be: always open, always ask, or never open, which must
apply to all candidate URI intent filters equally.

o [C-0-7] The user MUST be able to see a list of the candidate URI intent filters.

o The device implementation MAY provide the user with the ability to override
specific candidate URI intent filters that were successfully verified, on a per-
intent filter basis.

o [C-0-8] The device implementation MUST provide users with the ability to view
and override specific candidate URI intent filters if the device implementation
lets some candidate URI intent filters succeed verification while some others
can fail.

3.2.3.3. Intent Namespaces

e [C-0-1] Device implementations MUST NOT include any Android component that honors
any new intent or broadcast intent patterns using an ACTION, CATEGORY, or other key
string in the android. or com.android. namespace.

e [C-0-2] Device implementers MUST NOT include any Android components that honor any
new intent or broadcast intent patterns using an ACTION, CATEGORY, or other key string
in a package space belonging to another organization.

e [C-0-3] Device implementers MUST NOT alter or extend any of the intent patterns used by
the core apps listed in section 3.2.3.1 .

e Device implementations MAY include intent patterns using namespaces clearly and
obviously associated with their own organization. This prohibition is analogous to that
specified for Java language classes in section 3.6 .

3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain intents to notify them of changes in
the hardware or software environment.

Device implementations:
e [C-0-1] MUST broadcast the public broadcast intents in response to appropriate system
events as described in the SDK documentation. Note that this requirement is not conflicting

with section 3.5 as the limitation for background applications are also described in the SDK
documentation.

3.2.3.5. Default App Settings

ANarolC Page 30 of 122

https://developer.android.com/training/app-links
https://developers.google.com/digital-asset-links

Android includes settings that provide users an easy way to select their default applications, for
example for Home screen or SMS.

Where it makes sense, device implementations MUST provide a similar settings menu and be
compatible with the intent filter pattern and APl methods described in the SDK documentation as
below.

If device implementations report android.software.home_screen , they:

e [C-1-1] MUST honor the android.settings. HOME _SETTINGS intent to show a default app
settings menu for Home Screen.

If device implementations report android.hardware.telephony , they:

e [C-2-1] MUST provide a settings menu that will call the
android.provider.Telephony. ACTION_CHANGE DEFAULT intent to show a dialog to change
the default SMS application.

e [C-2-2] MUST honor the android.telecom.action. CHANGE DEFAULT DIALER intent to
show a dialog to allow the user to change the default Phone application.

e [C-2-3] MUST honor the android.telecom.action. CHANGE _PHONE_ACCOUNTS intent to
provide user affordance to configure the ConnectionServices associated with the
PhoneAccounts , as well as a default PhoneAccount that the telecommunications service
provider will use to place outgoing calls. The AOSP implementation meets this requirement
by including a "Calling Accounts option" menu within the "Calls" settings menu.

If device implementations report android.hardware.nfc.hce , they:

e [C-3-1] MUST honor the android.settings.NFC_PAYMENT_SETTINGS intent to show a
default app settings menu for Tap and Pay.

If device implementations support the VoicelnteractionService and have more than one application
using this APl installed at a time, they:

e [C-4-1] MUST honor the android.settings. ACTION_VOICE INPUT_SETTINGS intent to show
a default app settings menu for voice input and assist.

3.2.4. Activities on secondary displays

If device implementations allow launching normal Android Activities on secondary displays, they:

e [C-1-1] MUST set the android.software.activities_on_secondary displays feature flag.

e [C-1-2] MUST guarantee API compatibility similar to an activity running on the primary
display.

e [C-1-3] MUST land the new activity on the same display as the activity that launched it,
when the new activity is launched without specifying a target display via the
ActivityOptions.setLaunchDisplayld() API.

e [C-1-4] MUST destory all activities, when a display with the Display.FLAG PRIVATE flag is

removed.
e [C-1-5] MUST resize accordingly all activities on a VirtualDisplay if the display itself is
resized.

¢ MAY show an IME (input method editor, a user control that enables users to enter text) on
the primary display, when a text input field becomes focused on a secondary display.

e SHOULD implement the input focus on the secondary display independently of the primary
display, when touch or key inputs are supported.

OﬂdfOld Page 31 of 122

http://developer.android.com/reference/android/provider/Settings.html#ACTION_HOME_SETTINGS
http://developer.android.com/reference/android/provider/Telephony.Sms.Intents.html
https://developer.android.com/reference/android/telecom/TelecomManager.html#ACTION_CHANGE_DEFAULT_DIALER
https://developer.android.com/reference/android/telecom/TelecomManager.html#ACTION_CHANGE_PHONE_ACCOUNTS
https://developer.android.com/reference/android/telecom/ConnectionService.html
https://developer.android.com/reference/android/telecom/PhoneAccount.html
http://developer.android.com/reference/android/provider/Settings.html#ACTION_NFC_PAYMENT_SETTINGS
https://developer.android.com/reference/android/provider/Settings.html#ACTION_VOICE_INPUT_SETTINGS
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/ActivityOptions.html#setLaunchDisplayId%28int%29
http://developer.android.com/reference/android/view/Display.html#FLAG_PRIVATE
https://developer.android.com/reference/android/hardware/display/VirtualDisplay.html

e SHOULD have android.content.res.Configuration which corresponds to that display in order to
be displayed, operate correctly, and maintain compatibility if an activity is launched on
secondary display.

If device implementations allow launching normal Android Activities on secondary displays and
primary and secondary displays have different android.util.DisplayMetrics :

e [C-2-1] Non-resizeable activities (that have resizeableActivity=false in AndroidManifest.xml)
and apps targeting API level 23 or lower MUST NOT be allowed on secondary displays.

If device implementations allow launching normal Android Activities on secondary displays and a
secondary display has the android.view.Display.FLAG PRIVATE flag:

e [C-3-1] Only the owner of that display, system, and activities that are already on that
display MUST be able to launch to it. Everyone can launch to a display that has
android.view.Display.FLAG PUBLIC flag.

3.3. Native API Compatibility

Device implementers are:
Native code compatibility is challenging. For this reason, device implementers are:

e [SR] STRONGLY RECOMMENDED to use the implementations of the libraries listed
below from the upstream Android Open Source Project.

3.3.1. Application Binary Interfaces

Managed Dalvik bytecode can call into native code provided in the application .apk file as an ELF .so
file compiled for the appropriate device hardware architecture. As native code is highly dependent on
the underlying processor technology, Android defines a number of Application Binary Interfaces (ABIs)
in the Android NDK.

Device implementations:

e [C-0-1] MUST be compatible with one or more defined ABIls and implement compatibility
with the Android NDK.

e [C-0-2] MUST include support for code running in the managed environment to call into
native code, using the standard Java Native Interface (JNI) semantics.

e [C-0-3] MUST be source-compatible (i.e. header-compatible) and binary-compatible (for
the ABI) with each required library in the list below.

e [C-0-4] MUST support the equivalent 32-bit ABI if any 64-bit ABI is supported.

e [C-0-5] MUST accurately report the native Application Binary Interface (ABI) supported by
the device, via the android.os.Build. SUPPORTED_ABIS ,
android.os.Build. SUPPORTED 32 BIT ABIS, and
android.os.Build. SUPPORTED 64 BIT ABIS parameters, each a comma separated list of
ABIls ordered from the most to the least preferred one.

e [C-0-6] MUST report, via the above parameters, only those ABls documented and
described in the latest version of the Android NDK ABI Management documentation , and
MUST include support for the Advanced SIMD (a.k.a. NEON) extension.

e [C-0-7] MUST make all the following libraries, providing native APIs, available to apps that
include native code:
o libaaudio.so (AAudio native audio support)
o libandroid.so (native Android activity support)

OﬂdfOld Page 32 of 122

https://developer.android.com/reference/android/content/res/Configuration.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/util/DisplayMetrics.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/view/Display.html#FLAG_PRIVATE
https://developer.android.com/reference/android/view/Display.html#FLAG_PUBLIC
https://developer.android.com/ndk/guides/abis.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/Beijfcja.html

o libc (C library)

o libcamera2ndk.so

o libdl (dynamic linker)

o libEGL.so (native OpenGL surface management)
o libGLESv1_CM.so (OpenGL ES 1.x)

o libGLESv2.so (OpenGL ES 2.0)

o libGLESV3.s0 (OpenGL ES 3.x)

o libicui18n.so

o libicuuc.so

o libjnigraphics.so

o liblog (Android logging)

o libmediandk.so (native media APIs support)

o libm (math library)

o libOpenMAXAL.so (OpenMAX AL 1.0.1 support)
o libOpenSLES.so (OpenSL ES 1.0.1 audio support)
o libRS.so

o libstdc++ (Minimal support for C++)

o libvulkan.so (Vulkan)

o libz (Zlib compression)

o JNI interface

e [C-0-8] MUST NOT add or remove the public functions for the native libraries listed above.

e [C-0-9] MUST list additional non-AOSP libraries exposed directly to third-party apps in
/vendor/etc/public.libraries.txt .

e [C-0-10] MUST NOT expose any other native libraries, implemented and provided in
AOSP as system libraries, to third-party apps targeting API level 24 or higher as they are
reserved.

e [C-0-11] MUST export all the OpenGL ES 3.1 and Android Extension Pack function
symbols, as defined in the NDK, through the libGLESv3.so library. Note that while all the
symbols MUST be present, section 7.1.4.1 describes in more detail the requirements for
when the full implementation of each corresponding functions are expected.

e [C-0-12] MUST export function symbols for the core Vulkan 1.0 function symobls, as well
as the VK _KHR surface , VK _KHR android surface , VK_KHR swapchain ,

VK _KHR_ maintenancel , and VK_KHR get physical device properties2 extensions through
the libvulkan.so library. Note that while all the symbols MUST be present, section 7.1.4.2
describes in more detail the requirements for when the full implementation of each
corresponding functions are expected.

e SHOULD be built using the source code and header files available in the upstream Android
Open Source Project

Note that future releases of the Android NDK may introduce support for additional ABlIs.
3.3.2. 32-bit ARM Native Code Compatibility
If device implementations are 64-bit ARM devices, then:
e [C-1-1] Although the ARMv8 architecture deprecates several CPU operations, including
some operations used in existing native code, the following deprecated operations MUST

remain available to 32-bit native ARM code, either through native CPU support or through
software emulation:

o SWP and SWPB instructions

Page 33 of 122

http://developer.android.com/guide/topics/graphics/opengl.html#aep

o SETEND instruction
o CP15ISB, CP15DSB, and CP15DMB barrier operations

If device implementations include a 32-bit ARM ABI, they:

e [C-2-1] MUST include the following lines in /proc/cpuinfo when it is read by 32-bit ARM
applications to ensure compatibility with applications built using legacy versions of Android
NDK.

o Features: , followed by a list of any optional ARMv7 CPU features supported by
the device.

o CPU architecture: , followed by an integer describing the device's highest
supported ARM architecture (e.g., "8" for ARMv8 devices).

e SHOULD not alter /proc/cpuinfo when read by 64-bit ARM or non-ARM applications.

3.4. Web Compatibility
3.4.1. WebView Compatibility

If device implementations provide a complete implementation of the android.webkit. Webview API, they:

e [C-1-1] MUST report android.software.webview .

e [C-1-2] MUST use the Chromium Project build from the upstream Android Open Source
Project on the Android 8.1 branch for the implementation of the android.webkit. WebView
API.

e [C-1-3] The user agent string reported by the WebView MUST be in this format:

Mozilla/5.0 (Linux; Android $(VERSION); $(MODEL) Build/$(BUILD); wv)
AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 $(CHROMIUM_VER) Mobile
Safari/537.36
o The value of the $(VERSION) string MUST be the same as the value for
android.os.Build. VERSION.RELEASE.
o The value of the $(MODEL) string MUST be the same as the value for
android.os.Build. MODEL.
o The value of the $(BUILD) string MUST be the same as the value for
android.os.Build.ID.
o The value of the $(CHROMIUM_VER) string MUST be the version of
Chromium in the upstream Android Open Source Project.
o Device implementations MAY omit Mobile in the user agent string.

o The WebView component SHOULD include support for as many HTML5 features as
possible and if it supports the feature SHOULD conform to the HTMLS5 specification .

3.4.2. Browser Compatibility

If device implementations include a standalone Browser application for general web browsing, they:

e [C-1-1] MUST support each of these APIs associated with HTML5:
o application cache/offline operation
o <video> tag
o geolocation

e [C-1-2] MUST support the HTML5/W3C webstorage APl and SHOULD support the
HTML5/W3C IndexedDB API . Note that as the web development standards bodies are

OﬁdfOld Page 34 of 122

http://www.chromium.org/
http://developer.android.com/reference/android/webkit/WebView.html
http://html.spec.whatwg.org/multipage/
http://www.w3.org/html/wg/drafts/html/master/browsers.html#offline
http://www.w3.org/html/wg/drafts/html/master/semantics.html#video
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/IndexedDB/

transitioning to favor IndexedDB over webstorage, IndexedDB is expected to become a
required component in a future version of Android.

e MAY ship a custom user agent string in the standalone Browser application.

e SHOULD implement support for as much of HTML5 as possible on the standalone
Browser application (whether based on the upstream WebKit Browser application or a
third-party replacement).

However, If device implementations do not include a standalone Browser application, they:

e [C-2-1] MUST still support the public intent patterns as described in section 3.2.3.1 .

3.5. API Behavioral Compatibility

The behaviors of each of the API types (managed, soft, native, and web) must be consistent with the
preferred implementation of the upstream Android Open Source Project . Some specific areas of
compatibility are:

e [C-0-1] Devices MUST NOT change the behavior or semantics of a standard intent.
o [C-0-2] Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of
system component (such as Service, Activity, ContentProvider, etc.).
e [C-0-3] Devices MUST NOT change the semantics of a standard permission.
e Devices MUST NOT alter the limitations enforced on background applications. More
specifically, for background apps:
o [C-0-4] they MUST stop executing callbacks that are registered by the app to
receive outputs from the GnssMeasurement and GnssNavigationMessage .
o [C-0-5] they MUST rate-limit the frequency of updates that are provided to the

app through the LocationManager API class or the WifiManager.startScan()
method.

o [C-0-6] if the app is targeting APl level 25 or higher, they MUST NOT allow to
register broadcast receivers for the implicit broadcasts of standard Android
intents in the app's manifest, unless the broadcast intent requires a "signature"
or "signatureOrSystem" protectionLevel permission or are on the exemption list .

o [C-0-7] if the app is targeting API level 25 or higher, they MUST stop the app's
background services, just as if the app had called the services' stopSelf()
method, unless the app is placed on a temporary whitelist to handle a task
that's visible to the user.

o [C-0-8] if the app is targeting API level 25 or higher, they MUST release the
wakelocks the app holds.

The above list is not comprehensive. The Compatibility Test Suite (CTS) tests significant portions of
the platform for behavioral compatibility, but not all. It is the responsibility of the implementer to ensure
behavioral compatibility with the Android Open Source Project. For this reason, device implementers
SHOULD use the source code available via the Android Open Source Project where possible, rather
than re-implement significant parts of the system.

3.6. APl Namespaces
Android follows the package and class namespace conventions defined by the Java programming

language. To ensure compatibility with third-party applications, device implementers MUST NOT make
any prohibited modifications (see below) to these package namespaces:

e java.*

OﬁdfOld Page 35 of 122

http://html.spec.whatwg.org/multipage/
http://source.android.com/
https://developer.android.com/reference/android/location/GnssMeasurement.html
https://developer.android.com/reference/android/location/GnssNavigationMessage.html
https://developer.android.com/reference/android/location/LocationManager.html
https://developer.android.com/reference/android/net/wifi/WifiManager.html#startScan%28%29
https://developer.android.com/guide/topics/manifest/permission-element.html#plevel
https://developer.android.com/preview/features/background-broadcasts.html
https://developer.android.com/reference/android/app/Service.html#stopSelf%28%29

e javax.*

® sun.*
android.*
com.android.*

[)

[]

That is, they:

e [C-0-1] MUST NOT modify the publicly exposed APls on the Android platform by changing
any method or class signatures, or by removing classes or class fields.

e [C-0-2] MUST NOT add any publicly exposed elements (such as classes or interfaces, or
fields or methods to existing classes or interfaces) or Test or System APIs to the APIs in
the above namespaces. A “publicly exposed element” is any construct that is not
decorated with the “@hide” marker as used in the upstream Android source code.

Device implementers MAY modify the underlying implementation of the APIs, but such modifications:

e [C-0-3] MUST NOT impact the stated behavior and Java-language signature of any
publicly exposed APIs.

o [C-0-4] MUST NOT be advertised or otherwise exposed to developers.

However, device implementers MAY add custom APIs outside the standard Android namespace, but
the custom APIs:

e [C-0-5] MUST NOT be in a namespace owned by or referring to another organization. For
instance, device implementers MUST NOT add APIs to the com.google.* or similar
namespace: only Google may do so. Similarly, Google MUST NOT add APlIs to other
companies' namespaces.

e [C-0-6] MUST be packaged in an Android shared library so that only apps that explicitly
use them (via the <uses-library> mechanism) are affected by the increased memory usage
of such APlIs.

If a device implementer proposes to improve one of the package namespaces above (such as by
adding useful new functionality to an existing API, or adding a new API), the implementer SHOULD
visit source.android.com and begin the process for contributing changes and code, according to the
information on that site.

Note that the restrictions above correspond to standard conventions for naming APls in the Java
programming language; this section simply aims to reinforce those conventions and make them
binding through inclusion in this Compatibility Definition.

3.7. Runtime Compatibility
Device implementations:

e [C-0-1] MUST support the full Dalvik Executable (DEX) format and Dalvik bytecode
specification and semantics .

e [C-0-2] MUST configure Dalvik runtimes to allocate memory in accordance with the
upstream Android platform, and as specified by the following table. (See section 7.1.1 for
screen size and screen density definitions.)

e SHOULD use Android RunTime (ART), the reference upstream implementation of the
Dalvik Executable Format, and the reference implementation’s package management
system.

e SHOULD run fuzz tests under various modes of execution and target architectures to

ANarolC Page 36 of 122

http://source.android.com/
https://android.googlesource.com/platform/dalvik/

assure the stability of the runtime. Refer to JFuzz and DexFuzz in the Android Open
Source Project website.

Note that memory values specified below are considered minimum values and device

implementations MAY allocate more memory per application.

Screen Layout

Screen Density

Minimum Application Memory

120 dpi (Idpi)

160 dpi (mdpi) 32MB
213 dpi (tvdpi)
240 dpi (hdpi) 36MB
280 dpi (280dpi)

Android Watch 320 dpi (xhdp) 48MB
360 dpi (360dpi)
400 dpi (400dpi) 56MB
420 dpi (420dpi) 64MB
480 dpi (xxhdpi) 88MB
560 dpi (560dpi) 112MB
640 dpi (xxxhdpi) 154MB
120 dpi (Idpi) 3oMB
160 dpi (mdpi)
213 dpi (tvdpi)
240 dpi (hdpi) 48MB
280 dpi (280dpi)

small/normal 320 dpi {xndp) 80MB
360 dpi (360dpi)
400 dpi (400dpi) 96MB
420 dpi (420dpi) 112MB
480 dpi (xxhdpi) 128MB
560 dpi (560dpi) 192MB
640 dpi (xxxhdpi) 256MB
120 dpi (Idpi) 32MB
160 dpi (mdpi) 48MB
213 dpi (tvdpi) SOMB
240 dpi (hdpi)
280 dpi (280dpi) 96MB
320 dpi (xhdpi) 128MB

large 360 dpi (360dpi) 160MB
400 dpi (400dpi) 192MB

android

Page 37 of 122

https://android.googlesource.com/platform/art/+/master/tools/dexfuzz/
https://android.googlesource.com/platform/art/+/master/tools/dexfuzz/

420 dpi (420dpi) 228MB

480 dpi (xxhdpi) 256MB
560 dpi (560dpi) 384MB
640 dpi (xxxhdpi) 512MB
120 dpi (Idpi) 48MB
160 dpi (mdpi) 80MB
213 dpi (tvdpi) 96MEB
240 dpi (hdpi)
280 dpi (280dpi) 144MB
Jlarge 320 dpi (xhdpi) 192MB
360 dpi (360dpi) 240MB
400 dpi (400dpi) 288MB
420 dpi (420dpi) 336MB
480 dpi (xxhdpi) 384MB
560 dpi (560dpi) 576MB
640 dpi (xxxhdpi) 768MB

3.8. User Interface Compatibility
3.8.1. Launcher (Home Screen)

Android includes a launcher application (home screen) and support for third-party applications to
replace the device launcher (home screen).

If device implementations allow third-party applications to replace the device home screen, they:

e [C-1-1] MUST declare the platform feature android.software.home_screen .

e [C-1-2] MUST return the AdaptivelconDrawable object when the third party application use
<adaptive-icon> tag to provide their icon, and the PackageManager methods to retrieve icons
are called.

If device implementations include a default launcher that supports in-app pinning of shortcuts, they:

o [C-2-1] MUST report true for ShortcutManager.isRequestPinShortcutSupported() .

e [C-2-2] MUST have user affordance asking the user before adding a shortcut requested by
apps via the ShortcutManager.requestPinShortcut() APl method.

o [C-2-3] MUST support pinned shortcuts and dynamic and static shortcuts as documented
on the App Shortcuts page .

Conversely, if device implementations do not support in-app pinning of shortcuts, they:
o [C-3-1] MUST report false for ShortcutManager.isRequestPinShortcutSupported() .

If device implementations implement a default launcher that provides quick access to the additional
shortcuts provided by third-party apps through the ShortcutManager API, they:

e [C-4-1] MUST support all documented shortcut features (e.g. static and dynamic shortcuts,

OﬂdfOld Page 38 of 122

https://developer.android.com/reference/android/graphics/drawable/AdaptiveIconDrawable.html
https://developer.android.com/reference/android/content/pm/PackageManager.html
https://developer.android.com/reference/android/content/pm/ShortcutManager.html#isRequestPinShortcutSupported%28%29
https://developer.android.com/reference/android/content/pm/ShortcutManager.html#requestPinShortcut%28android.content.pm.ShortcutInfo, android.content.IntentSender%29
https://developer.android.com/guide/topics/ui/shortcuts.html
https://developer.android.com/reference/android/content/pm/ShortcutManager.html#isRequestPinShortcutSupported%28%29
https://developer.android.com/reference/android/content/pm/ShortcutManager.html

pinning shortcuts) and fully implement the APIs of the ShortcutManager API class.

If device implementations include a default launcher app that shows badges for the app icons, they:

e [C-5-1] MUST respect the NotificationChannel.setShowBadge() APl method. In other words,
show a visual affordance associated with the app icon if the value is set as true , and do
not show any app icon badging scheme when all of the app's notification channels have
set the value as false .

o MAY override the app icon badges with their proprietary badging scheme when third-party
applications indicate support of the proprietary badging scheme through the use of
proprietary APIs, but SHOULD use the resources and values provided through the
notification badges APls described in the SDK , such as the Notification.Builder.setNumber()
and the Notification.Builder.setBadgelconType() API.

3.8.2. Widgets

Android supports third-party app widgets by defining a component type and corresponding APl and
lifecycle that allows applications to expose an “AppWidget” to the end user.

If device implementations support third-party app widgets, they:

e [C-1-1] MUST declare support for platform feature android.software.app widgets .

e [C-1-2] MUST include built-in support for AppWidgets and expose user interface
affordances to add, configure, view, and remove AppWidgets directly within the Launcher.

e [C-1-3] MUST be capable of rendering widgets that are 4 x 4 in the standard grid size. See
the App Widget DesignGuidelines in the Android SDK documentation for details.

e MAY support application widgets on the lock screen.

If device implementations support third-party app widgets and in-app pinning of shortcuts, they:

e [C-2-1] MUST report true for AppWidgetManager.html.isRequestPinAppWidgetSupported() .

e [C-2-2] MUST have user affordance asking the user before adding a shortcut requested by

apps via the AppWidgetManager.requestPinAppWidget() APl method.
3.8.3. Notifications
Android includes Notification and NotificationManager APIs that allow third-party app developers to

notify users of notable events and attract users' attention using the hardware components (e.g. sound,
vibration and light) and software features (e.g. notification shade, system bar) of the device.

3.8.3.1. Presentation of Notifications

If device implementations allow third party apps to notify users of notable events , they:

e [C-1-1] MUST support notifications that use hardware features, as described in the SDK
documentation, and to the extent possible with the device implementation hardware. For
instance, if a device implementation includes a vibrator, it MUST correctly implement the
vibration APIs. If a device implementation lacks hardware, the corresponding APIs MUST
be implemented as no-ops. This behavior is further detailed in section 7 .

e [C-1-2] MUST correctly render all resources (icons, animation files etc.) provided for in the
APIs, or in the Status/System Bar icon style guide , although they MAY provide an
alternative user experience for notifications than that provided by the reference Android
Open Source implementation.

e [C-1-3] MUST honor and implement properly the behaviors described for the APIs to

OﬂdfOld Page 39 of 122

https://developer.android.com/reference/android/content/pm/ShortcutManager.html
https://developer.android.com/reference/android/app/NotificationChannel.html#setShowBadge%28boolean%29
https://developer.android.com/preview/features/notification-badges.html
http://developer.android.com/reference/android/app/Notification.Builder.html#setNumber%28int%29
http://developer.android.com/reference/android/app/Notification.Builder.html#setBadgeIconType%28int%29
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
https://developer.android.com/reference/android/appwidget/AppWidgetManager.html#isRequestPinAppWidgetSupported%28%29
https://developer.android.com/reference/android/appwidget/AppWidgetManager.html#requestPinAppWidget%28android.content.ComponentName,android.os.Bundle, android.app.PendingIntent%29
https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/guide/topics/resources/available-resources.html
http://developer.android.com/design/style/iconography.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html#Managing

update, remove and group notifications.

e [C-1-4] MUST provide the full behavior of the NotificationChannel APl documented in the
SDK.

e [C-1-5] MUST provide a user affordance to block and modify a certain third-party app's
notification per each channel and app package level.

e [C-1-6] MUST also provide a user affordance to display deleted notification channels.
e SHOULD support rich notifications.

e SHOULD present some higher priority notifications as heads-up notifications.

e SHOULD have a user affordance to snooze notifications.

¢ MAY only manage the visibility and timing of when third-party apps can notify users of
notable events to mitigate safety issues such as driver distraction.

If device implementations support rich notifications, they:

e [C-2-1] MUST use the exact resources as provided through the Notification.Style API class
and its subclasses for the presented resource elements.

e SHOULD present each and every resource element (e.g. icon, title and summary text)
defined in the Notification.Style API class and its subclasses.

If device impelementations support heads-up notifications: they:

e [C-3-1] MUST use the heads-up natification view and resources as described in the
Notification.Builder API class when heads-up notifications are presented.

3.8.3.2. Notification Listener Service

Android includes the NotificationListenerService APIs that allow apps (once explicitly enabled by the
user) to receive a copy of all notifications as they are posted or updated.

If device implementations report the feature flag android.hardware.ram.normal , they:

e [C-1-1] MUST correctly and promptly update notifications in their entirety to all such
installed and user-enabled listener services, including any and all metadata attached to the
Notification object.

e [C-1-2] MUST respect the snoozeNotification() API call, and dismiss the notification and
make a callback after the snooze duration that is set in the API call.

If device implementations have a user affordance to snooze natifications, they:

e [C-2-1] MUST reflect the snoozed notification status properly through the standard APIs
such as NotificationListenerService.getSnoozedNotifications() .

e [C-2-2] MUST make this user affordance available to snooze notifications from each
installed third-party app's, unless they are from persistent/foreground services.

3.8.3.3. DND (Do not Disturb)

If device implementations support the DND feature, they:

e [C-1-1] MUST implement an activity that would respond to the intent
ACTION_NOTIFICATION_POLICY ACCESS _SETTINGS , which for implementations
with Ul_MODE_TYPE_NORMAL it MUST be an activity where the user can grant or deny
the app access to DND policy configurations.

e [C-1-2] MUST, for when the device implementation has provided a means for the user to

OﬂdfOld Page 40 of 122

https://developer.android.com/reference/android/app/NotificationChannel.html
https://developer.android.com/reference/android/app/Notification.Style.html
https://developer.android.com/reference/android/app/Notification.Style.html
https://developer.android.com/reference/android/app/Notification.Builder.html
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_RAM_NORMAL
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html#snoozeNotification%28java.lang.String, long%29
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html#getSnoozedNotifications%28%29
https://developer.android.com/reference/android/provider/Settings.html#ACTION_NOTIFICATION_POLICY_ACCESS_SETTINGS

grant or deny third-party apps to access the DND policy configuration, display Automatic
DND rules created by applications alongside the user-created and pre-defined rules.

e [C-1-3] MUST honor the suppressedVisualEffects values passed along the
NotificationManager.Policy and if an app has set any of the
SUPPRESSED_EFFECT_SCREEN_OFF or SUPPRESSED_EFFECT_SCREEN_ON
flags, it SHOULD indicate to the user that the visual effects are suppressed in the DND
settings menu.

3.8.4. Search

Android includes APIs that allow developers to incorporate search into their applications and expose
their application’s data into the global system search. Generally speaking, this functionality consists of
a single, system-wide user interface that allows users to enter queries, displays suggestions as users
type, and displays results. The Android APIs allow developers to reuse this interface to provide search
within th